Abstract
In 2014 a novel identity theft scheme targeting specific application scenarios in face biometrics was introduced. In this scheme, a so called face morph melts two or more face images of different persons into one image, which is visually similar to multiple real world persons. Based on this non authentic image, it is possible to apply for an image based identity document to be issued by a corresponding authority. Thus, multiple persons can use such a document to pass image based person verification scenarios with a single document containing an artificially weakened template. Currently there is no reliable existing security mechanism to detect this attack.
This paper introduces a novel detection approach for face morphing forgeries based on a continuous image degradation. This is considered relevant because the degradation approach creates multiple artificial self-references and measures the “distance” from these references to the input. A small distance (significantly smaller than the one to be expected from a pristine image) could be considered as an anomaly here, indicating media manipulations (e.g. caused by morphing). Our degradation process is based on JPEG compression with different compression values. The evaluation results of our detection approach are classification accuracies of 90.1% under laboratory conditions and 84.3% under real world conditions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ferrera, M., Franco, A., Maltoni, D.: The magic passport. In: Proceedings of the IEEE IEEE International Conference on Biometrics, Clearwater, Florida, pp. 1–7 (2014)
Makrushin, A., Neubert, T., Dittmann, J.: Automatic generation and detection of visually faultless facial morphs. In: Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2017). VISAPP, vol. 6, pp. 39–50 (2017). ISBN: 978-989-758-227-1
Hildebrandt, M., Neubert, T., Makrushin, A., Dittmann, J.: Benchmarking face morphing forgery detection: application of StirTrace for impact simulation of different processing steps. In: Li, C.-T. (ed.) Proceedings of the International Workshop on Biometrics and Forensics (IWBF 2017), Coventry, UK, University of Warwick, 4–5 April 2017
Ferrara, M., Franco, A., Maltoni, D.: On the effects of image alterations on face recognition accuracy. In: Bourlai, T. (ed.) Face Recognition Across the Imaging Spectrum, pp. 195–222. Springer, Cham (2016). doi:10.1007/978-3-319-28501-6_9
Schetinger, V., Iuliani, M., Piva, A., Oliveira, M.: Digital Image Forensics vs. Image Composition: An Indirect Arms Race. CoRR abs/1601.03239 (2016)
Raghavendra, R., Raja, K., Busch, C.: Detecting morphed facial images. In: Proceedings of 8th IEEE International Conference on Biometrics: Theory, Applications and Systems (BTAS 2016), Niagra Falls, USA, 6–9 September 2016
Othman, A., Ross, A.: Privacy of facial soft biometrics: suppressing gender but retaining identity. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 682–696. Springer, Cham (2015). doi:10.1007/978-3-319-16181-5_52
Scherhag, U., Raghavendra, R., Raja, K.B., Gomez-Barrero, M., Rathgeb, C., Busch, C.: On the vulnerability of face recognition systems towards morphed face attacks. In: Li, C.-T.(ed.) Proceedings of the International Workshop on Biometrics and Forensics (IWBF 2017), Coventry, UK, University of Warwick, 4–5 April 2017
Gomez-Barrero, M., Rathgeb, C., Scherhag, U., Busch, C.: Is your biometric system robust to morphing attacks? In: Li, C.-T. (ed.) Proceedings of the International Workshop on Biometrics and Forensics (IWBF 2017), Coventry, UK, University of Warwick, 4–5 April 2017
Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1508–1511 (2005). doi:10.1109/ICCV.2005.104
Mair, E., Hager, G., Burschka, D., Suppa, M., Hirzinger, G.: Adaptive and Generic Corner Detection Based on the Accelerated Segment Test (2010). http://www6.in.tum.de/Main/Publications/Mair2010c.pdf. Access 7 Feb 2017
Shi, J., Tomasi, C.: Good features to track. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600 (1994)
Low, D.: Object recognition from local scale-invariant features. In: Proceedings of the International Conference on Computer Vision (1999)
Bay, H., Tuytelaars, T., Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). doi:10.1007/11744023_32
Wolf, A.: Portrait Quality (Reference Facial Images for MRTD). Version: 0.08 ICAO, Published by authority of the Secretary General (2017)
Hall, M., et al.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)
Landwehr, N., Hall, M., Frank, E.: Logistic model trees. In: Proceedings in Machine Learning, pp. 161–205 (2005)
Hancock, P.: Psychological image collection at stirling (pics) - 2d face sets - Utrecht ECVP. http://pics.psych.stir.ac.uk/. Accessed 21 Apr 2017
Luxand, Inc.: Luxand - detect and recognize faces and facial features with luxand facesdk (2016). https://www.luxand.com/facesdk/. Accessed 6 June 2017
Acknowledgments
The work in this paper has been funded in part by the German Federal Ministry of Education and Research (BMBF) through the research programme ANANAS under the contract no. FKZ: 16KIS0509K. The author would like to thank Jana Dittmann and Andrey Makrushin for the initial ideas as well as the joint work with both of them and Christian Kraetzer for discussions on the approach evaluated in this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Neubert, T. (2017). Face Morphing Detection: An Approach Based on Image Degradation Analysis. In: Kraetzer, C., Shi, YQ., Dittmann, J., Kim, H. (eds) Digital Forensics and Watermarking. IWDW 2017. Lecture Notes in Computer Science(), vol 10431. Springer, Cham. https://doi.org/10.1007/978-3-319-64185-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-64185-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64184-3
Online ISBN: 978-3-319-64185-0
eBook Packages: Computer ScienceComputer Science (R0)