Abstract
Data augmentation is a simple and efficient technique to improve the robustness of a speech recognizer when deployed in mismatched training-test conditions. Our work, conducted during the JSALT 2015 workshop, aimed at the development of: (1) Data augmentation strategies including noising and reverberation. They were tested in combination with two approaches to signal enhancement: a carefully engineered WPE dereverberation and a learned DNN-based denoising autoencoder. (2) Proposing a novel technique for extracting an informative vector from a Sequence Summarizing Neural Network (SSNN). Similarly to i-vector extractor, the SSNN produces a “summary vector”, representing an acoustic summary of an utterance. Such vector can be used directly for adaptation, but the main usage matching the aim of this chapter is for selection of augmented training data. All techniques were tested on the AMI training set and CHiME3 test set.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
Brno University of Technology open i-vector extractor (see http://voicebiometry.org) was used for these experiments.
References
Ager, M., Cvetkovic, Z., Sollich, P., Bin, Y.: Towards robust phoneme classification: augmentation of PLP models with acoustic waveforms. In: 16th European Signal Processing Conference, 2008, pp. 1–5 (2008)
Beaufays, F., Vanhoucke, V., Strope, B.: Unsupervised discovery and training of maximally dissimilar cluster models. In: Proceedings of Interspeech (2010)
Bellegarda, J.R., de Souza, P.V., Nadas, A., Nahamoo, D., Picheny, M.A., Bahl, L.R.: The metamorphic algorithm: a speaker mapping approach to data augmentation. IEEE Trans. Speech Audio Process. 2(3), 413–420 (1994). doi: 10.1109/89.294355
Bellegarda, J., de Souza, P., Nahamoo, D., Padmanabhan, M., Picheny, M., Bahl, L.: Experiments using data augmentation for speaker adaptation. In: International Conference on Acoustics, Speech, and Signal Processing, 1995, ICASSP-95, vol. 1, pp. 692–695 (1995). doi: 10.1109/ICASSP.1995.479788
Cui, X., Goel, V., Kingsbury, B.: Data augmentation for deep neural network acoustic modeling. IEEE/ACM Trans. Audio Speech Lang. Process. 23(9), 1469–1477 (2015). doi: 10.1109/TASLP.2015.2438544
Dehak, N., Kenny, P., Dehak, R., Dumouchel, P., Ouellet, P.: Front-end factor analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process. 19(4), 788–798 (2011). doi: 10.1109/TASL.2010.2064307. http://dx.doi.org/10.1109/TASL.2010.2064307
Delcroix, M., Yoshioka, T., Ogawa, A., Kubo, Y., Fujimoto, M., Ito, N., Kinoshita, K., Espi, M., Hori, T., Nakatani, T., Nakamura, A.: Linear prediction-based dereverberation with advanced speech enhancement and recognition technologies for the REVERB challenge. In: Proceedings of REVERB’14 (2014)
Delcroix, M., Yoshioka, T., Ogawa, A., Kubo, Y., Fujimoto, M., Ito, N., Kinoshita, K., Espi, M., Araki, S., Hori, T., Nakatani, T.: Strategies for distant speech recognition in reverberant environments. EURASIP J. Adv. Signal Process. 2015, Article ID 60, 15 pp. (2015)
Egorova, E., Veselý, K., Karafiát, M., Janda, M., Černocký, J.: Manual and semi-automatic approaches to building a multilingual phoneme set. In: Proceedings of ICASSP 2013, pp. 7324–7328. IEEE Signal Processing Society, Piscataway (2013). http://www.fit.vutbr.cz/research/view_pub.php?id=10323
Gales, M.J.F., College, C.: Model-Based Techniques for Noise Robust Speech Recognition. University of Cambridge, Cambridge (1995)
Haykin, S.: Adaptive Filter Theory, 3rd edn. Prentice-Hall, Upper Saddle River, NJ (1996)
Hinton, G., Bengio, Y.: Visualizing data using t-SNE. In: Cost-Sensitive Machine Learning for Information Retrieval 33 (2008)
Hu, Y., Loizou, P.C.: Subjective comparison of speech enhancement algorithms. In: Proceedings of IEEE International Conference on Speech and Signal Processing, pp. 153–156 (2006)
Jaitly, N., Hinton, G.E.: Vocal tract length perturbation (VTLP) improves speech recognition. In: Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA (2013)
Kalinli, O., Seltzer, M.L., Acero, A.: Noise adaptive training using a vector Taylor series approach for noise robust automatic speech recognition. In: Proceedings of the 2009 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP’09, pp. 3825–3828. IEEE Computer Society, Washington (2009) doi: 10.1109/ICASSP.2009.4960461. http://dx.doi.org/10.1109/ICASSP.2009.4960461
Karafiát, M., Burget, L., Matějka, P., Glembek, O., Černocký, J.: iVector-based discriminative adaptation for automatic speech recognition. In: Proceedings of ASRU 2011, pp. 152–157. IEEE Signal Processing Society, Piscataway (2011). http://www.fit.vutbr.cz/research/view_pub.php?id=9762
Karafiát, M., Veselý, K., Szőke, I., Burget, L., Grézl, F., Hannemann, M., Černocký, J.: BUT ASR system for BABEL surprise evaluation 2014. In: Proceedings of 2014 Spoken Language Technology Workshop, pp. 501–506. IEEE Signal Processing Society, Piscataway (2014). http://www.fit.vutbr.cz/research/view_pub.php?id=10799
Karafiát, M., Grézl, F., Burget, L., Szőke, I., Černocký, J.: Three ways to adapt a CTS recognizer to unseen reverberated speech in BUT system for the ASpIRE challenge. In: Proceedings of Interspeech 2015, pp. 2454–2458. International Speech Communication Association, Grenoble (2015). http://www.fit.vutbr.cz/research/view_pub.php?id=10972
Kinoshita, K., Delcroix, M., Nakatani, T., Miyoshi, M.: Suppression of late reverberation effect on speech signal using long-term multiple-step linear prediction. IEEE Trans. Audio Speech Lang. Process. 17(4), 534–545 (2009)
Ko, T., Peddinti, V., Povey, D., Khudanpur, S.: Audio augmentation for speech recognition. In: INTERSPEECH, pp. 3586–3589. ISCA, Grenoble (2015)
Nakatani, T., Yoshioka, T., Kinoshita, K., Miyoshi, M., Juang, B.H.: Blind speech dereverberation with multi-channel linear prediction based on short time Fourier transform representation. In: Proceedings of ICASSP’08, pp. 85–88 (2008)
Ogata, K., Tachibana, M., Yamagishi, J., Kobayashi, T.: Acoustic model training based on linear transformation and MAP modification for HSMM-based speech synthesis. In: INTERSPEECH, pp. 1328–1331 (2006)
Ragni, A., Knill, K.M., Rath, S.P., Gales, M.J.F.: Data augmentation for low resource languages. In: INTERSPEECH 2014, 15th Annual Conference of the International Speech Communication Association, Singapore, September 14–18, 2014, pp. 810–814 (2014)
Saon, G., Soltau, H., Nahamoo, D., Picheny, M.: Speaker adaptation of neural network acoustic models using i-vectors. In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 55–59. IEEE, New York (2013)
Siohan, O., Bacchiani, M.: iVector-based acoustic data selection. In: Proceedings of INTERSPEECH, pp. 657–661 (2013)
Swietojanski, P., Ghoshal, A., Renals, S.: Hybrid acoustic models for distant and multichannel large vocabulary speech recognition. In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU). IEEE, New York (2013)
Tokuda, K., Zen, H., Black, A.: An HMM-based approach to multilingual speech synthesis. In: Text to Speech Synthesis: New Paradigms and Advances, pp. 135–153. Prentice Hall, Upper Saddle River (2004)
Veselý, K., Ghoshal, A., Burget, L., Povey, D.: Sequence-discriminative training of deep neural networks. In: Proceedings of INTERSPEECH 2013, pp. 2345–2349. International Speech Communication Association, Grenoble (2013). http://www.fit.vutbr.cz/research/view_pub.php?id=10422
Veselý, K., Watanabe, S., Žmolíková, K., Karafiát, M., Burget, L., Černocký, J.: Sequence summarizing neural network for speaker adaptation. In: Proceedings of ICASSP (2016)
Wang, Y., Gales, M.J.F.: Speaker and noise factorization for robust speech recognition. IEEE Trans. Audio Speech Lang. Process. 20(7), 2149–2158 (2012). http://dblp.uni-trier.de/db/journals/taslp/taslp20.html#WangG12
Wei, K., Liu, Y., Kirchhoff, K., Bartels, C., Bilmes, J.: Submodular subset selection for large-scale speech training data. In: Proceedings of ICASSP, pp. 3311–3315 (2014)
Wu, Y., Zhang, R., Rudnicky, A.: Data selection for speech recognition. In: Proceedings of ASRU, pp. 562–565 (2007)
Xu, Y., Du, J., Dai, L.R., Lee, C.H.: An experimental study on speech enhancement based on deep neural networks. IEEE Signal Process Lett. 21(1), 65–68 (2014)
Yoshimura, T., Masuko, T., Tokuda, K., Kobayashi, T., Kitamura, T.: Speaker interpolation in HMM-based speech synthesis system. In: Eurospeech, pp. 2523–2526 (1997)
Yoshioka, T., Nakatani, T.: Generalization of multi-channel linear prediction methods for blind MIMO impulse response shortening. IEEE Trans. Audio Speech Lang. Process. 20(10), 2707–2720 (2012)
Yoshioka, T., Nakatani, T., Miyoshi, M., Okuno, H.G.: Blind separation and dereverberation of speech mixtures by joint optimization. IEEE Trans. Audio Speech Lang. Process. 19(1), 69–84 (2011)
Yoshioka, T., Chen, X., Gales, M.J.F.: Impact of single-microphone dereverberation on DNN-based meeting transcription systems. In: Proceedings of ICASSP’14 (2014)
Yoshioka, T., Ito, N., Delcroix, M., Ogawa, A., Kinoshita, K., Fujimoto, M., Yu, C., Fabian, W.J., Espi, M., Higuchi, T., Araki, S., Nakatani, T.: The NTT CHiME-3 system: advances in speech enhancement and recognition for mobile multi-microphone devices. In: Proceedings of ASRU’15, pp. 436–443 (2015)
Zavaliagkos, G., Siu, M.-H., Colthurst, T., Billa, J.: Using untranscribed training data to improve performance. In: The 5th International Conference on Spoken Language Processing, Incorporating the 7th Australian International Speech Science and Technology Conference, Sydney, Australia, 30 November–4 December 1998 (1998)
Acknowledgements
Besides the funding for the JSALT 2015 workshop, BUT researchers were supported by the Czech Ministry of Interior project no. VI20152020025, “DRAPAK,” and by the Czech Ministry of Education, Youth, and Sports from the National Program of Sustainability (NPU II) project “IT4 Innovations Excellence in Science—LQ1602.”
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Karafiát, M. et al. (2017). Training Data Augmentation and Data Selection. In: Watanabe, S., Delcroix, M., Metze, F., Hershey, J. (eds) New Era for Robust Speech Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-64680-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-64680-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64679-4
Online ISBN: 978-3-319-64680-0
eBook Packages: Computer ScienceComputer Science (R0)