Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Violence Detection Approach Based on Spatio-temporal Hypergraph Transition

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10425))

Included in the following conference series:

  • 2046 Accesses

Abstract

In the field of activity recognition, violence detection is one of the most challenging tasks due to the variety of action patterns and the lack of training data. In the last decade, the performance is getting improved by applying local spatio-temporal features. However, geometric relationships and transition processes of these features have not been fully utilized. In this paper, we propose a novel framework based on spatio-temporal hypergraph transition. First, we utilize hypergraphs to represent the geometric relationships among spatia-temporal features in a single frame. Then, we apply a new descriptor called Histogram of Velocity Change (HVC), which characterizes motion changing intensity, to model hypergraph transitions among consecutive frames. Finally, we adopt Hidden Markov Models (HMMs) with the hypergraphs and the descriptors to detect and localize violence in video frames. Experiment results on BEHAVE dataset and UT-Interaction dataset show that the proposed framework outperforms the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, L., Xiong, Y., Wang, Z., Qiao, Y., Lin, D., Tang, X., Gool, L.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). doi:10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  2. Kong, Y., Yun, F.: Close human interaction recognition using patch-aware models. IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 25, 167–178 (2015)

    Article  MathSciNet  Google Scholar 

  3. Ke, O., Bennamoun, M., An, S., Boussaid, F., Sohel, F.: Human interaction prediction using deep temporal features. In: 2016 European Conference on Computer Vision (2016)

    Google Scholar 

  4. Du, T., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: IEEE International Conference on Computer Vision, pp. 4489–4497 (2015)

    Google Scholar 

  5. Wang, L., Qiao, Y., Tang, X.: Action recognition with trajectory-pooled deep-convolutional descriptors. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition, pp. 4305–4314 (2015)

    Google Scholar 

  6. Zhang, B., Wang, L., Wang, Z., Qiao, Y., Wang, H.: Real-time action recognition with enhanced motion vector CNNs. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  7. Lan, T., Chen, T.-C., Savarese, S.: A hierarchical representation for future action prediction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 689–704. Springer, Cham (2014). doi:10.1007/978-3-319-10578-9_45

    Google Scholar 

  8. Xu, Z., Qing, L., Miao, J.: Activity auto-completion: predicting human activities from partial videos. In: International Conference on Computer Vision, pp. 3191–3199 (2015)

    Google Scholar 

  9. Ryoo, M.S.: Human activity prediction: early recognition of ongoing activities from streaming videos. In: 2011 International Conference on Computer Vision, pp. 1036–1043, November 2011

    Google Scholar 

  10. Cui, X., Liu, Q., Gao, M., Metaxas, D.N.: Abnormal detection using interaction energy potentials. In: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, 20–25 June 2011, pp. 3161–3167. Colorado Springs Co, USA, June 2011

    Google Scholar 

  11. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 935–942 (2009)

    Google Scholar 

  12. Ryoo, M.S., Aggarwal, J.K.: Spatio-temporal relationship match: video structure comparison for recognition of complex human activities. In: IEEE International Conference on Computer Vision, pp. 1593–1600 (2009)

    Google Scholar 

  13. Blunsden, S.J., Fisher, R.B.: The BEHAVE video dataset: ground truthed video for multi-person. Ann. BMVA 4, 1–11 (2009)

    Google Scholar 

  14. Wu, B., Yuan, C., Hu, W.: Human action recognition based on context-dependent graph kernels. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2609–2616 (2014)

    Google Scholar 

  15. Ben Aoun, N., Mejdoub, M., Ben Amar, C.: Graph-based approach for human action recognition using spatio-temporal features. J. Vis. Commun. Image Represent. 25(2), 329–338 (2014)

    Article  Google Scholar 

  16. Laptev, I., Lindeberg, T.: On space-time interest points. Int. J. Comput. Vision 64, 107–123 (2005)

    Article  Google Scholar 

  17. De Souza, F.D.M., Chavez, G.C., Do Valle, E.A., De A. Araujo, A.: Violence detection in video using spatio-temporal features. In: 2012 Proceedings of the 25th SIBGRAPI Conference on Graphics, Patterns and Images, pp. 224–230 (2010)

    Google Scholar 

  18. Nam, J.H., Alghoniemy, M., Tewfik, A.H.: Audio-visual content-based violent scene characterization. In: Proceedings of the International Conference on Image Processing, ICIP 1998, pp. 353–357 (1998)

    Google Scholar 

  19. Hassner, T., Itcher, Y., Kliper-Gross, O.: Violent flows: real-time detection of violent crowd behavior. In: Computer Vision and Pattern Recognition Workshops, pp. 1–6 (2012)

    Google Scholar 

  20. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 51(5), 4282–4286 (1995)

    Google Scholar 

  21. Mousavi, H., Galoogahi, H.K., Perina, A., Murino, V.: Detecting abnormal behavioral patterns in crowd scenarios. In: Esposito, A., Jain, L.C. (eds.) Toward Robotic Socially Believable Behaving Systems - Volume II. ISRL, vol. 106, pp. 185–205. Springer, Cham (2016). doi:10.1007/978-3-319-31053-4_11

    Chapter  Google Scholar 

  22. Brendel, W., Todorovic, S.: Learning spatiotemporal graphs of human activities. In: IEEE International Conference on Computer Vision, pp. 778–785 (2011)

    Google Scholar 

  23. Yi, Y., Lin, M.: Human action recognition with graph-based multiple-instance learning. Pattern Recogn. 53(C), 148–162 (2016)

    Article  Google Scholar 

  24. Ta, A.P., Wolf, C., Lavou, G., Baskurt, A.: Recognizing and localizing individual activities through graph matching. In: Seventh IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 196–203 (2010)

    Google Scholar 

  25. Park, S., Park, S., Hebert, M.: Fast and scalable approximate spectral matching for higher order graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 36(3), 479–492 (2014)

    Article  Google Scholar 

  26. Duchenne, O., Bach, F., In So, K., Ponce, J.: A tensor-based algorithm for high-order graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2383–95 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation of China (No. U1611461), National Natural Science Foundation of China (61602014), Shenzhen Peacock Plan (20130408-183003656), and Science and Technology Planning Project of Guangdong Province, China (No. 2014B090910001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ge Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Huang, J., Li, G., Li, N., Wang, R., Wang, W. (2017). A Violence Detection Approach Based on Spatio-temporal Hypergraph Transition. In: Felsberg, M., Heyden, A., Krüger, N. (eds) Computer Analysis of Images and Patterns. CAIP 2017. Lecture Notes in Computer Science(), vol 10425. Springer, Cham. https://doi.org/10.1007/978-3-319-64698-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64698-5_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64697-8

  • Online ISBN: 978-3-319-64698-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics