Abstract
We define a new notion of satisfaction of a temporal logic formula \(\varphi \) by a behavior w. This notion, denoted by \((w,t,t')\,\models \, \varphi \), is characterized by two time parameters: the position t from which satisfaction is considered, and the end of the (finite) behavior \(t'\) which indicates how much do we know about the behavior. We define this notion in dense time where \(\varphi \) is a formula in the future fragment of metric temporal logic (MTL) and w is a Boolean signal of bounded variability. We show that the set of all pairs \((t,t')\) such that \((w,t,t')\,\models \, \varphi \) can be expressed as a finite union of two-dimensional zones and give an effective procedure to compute it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In the context of reactive systems, finite behaviors are sometimes even considered anomalous, representing deadlocks.
- 2.
By a slight abuse of notation we use the same symbol for a formula and its satisfaction signal.
- 3.
It means that if a constraint \(f(t,t')\le c\) is implied by other constraints, the constraint \(f(t,t')\le c-\varepsilon \) is not implied by them for any \(\varepsilon >0\).
References
Abarbanel, Y., Beer, I., Gluhovsky, L., Keidar, S., Wolfsthal, Y.: FoCs – automatic generation of simulation checkers from formal specifications. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 538–542. Springer, Heidelberg (2000). doi:10.1007/10722167_40
Basin, D.A., Klaedtke, F., Zalinescu, E.: Failure-aware runtime verification of distributed systems. In: FSTTCS, pp. 590–603 (2015)
Bauer, A., Leucker, M., Schallhart, C.: Monitoring of real-time properties. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 260–272. Springer, Heidelberg (2006). doi:10.1007/11944836_25
Blake, A.: Canonical expressions in Boolean algebra. Ph.D. thesis (1938)
Brown, F.M.: Boolean Reasoning: The Logic of Boolean Equations. Springer, New York (2012). doi:10.1007/978-1-4757-2078-5
De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: IJCAI, pp. 854–860 (2013)
D’Souza, D., Tabareau, N.: On timed automata with input-determined guards. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 68–83. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30206-3_7
Eisner, C., Fisman, D., Havlicek, J.: A topological characterization of weakness. In: PODC, pp. 1–8 (2005)
Eisner, C., Fisman, D., Havlicek, J., Lustig, Y., McIsaac, A., Campenhout, D.: Reasoning with temporal logic on truncated paths. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 27–39. Springer, Heidelberg (2003). doi:10.1007/978-3-540-45069-6_3
Guelev, D.P., Dima, C., Enea, C.: An alternating-time temporal logic with knowledge, perfect recall and past: axiomatisation and model-checking. J. Appl. Non Class. Log. 21(1), 93–131 (2011)
Halpern, J.Y., Shoham, Y.: A propositional modal logic of time intervals. J. ACM (JACM) 38(4), 935–962 (1991)
Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and time. I. lower bounds. J. Comput. Syst. Sci. 38(1), 195–237 (1989)
Kamp, H.: Tense logic and the theory of order. Ph.D. thesis, UCLA (1968)
Konrad, S., Cheng, B.H.C.: Real-time specification patterns. In: ICSE, pp. 372–381 (2005)
Koymans, R.: Specifying real-time properties with metric temporal logic. Real Time Syst. 2(4), 255–299 (1990)
Maler, O.: Some thoughts on runtime verification. In: Falcone, Y., Sánchez, C. (eds.) RV 2016. LNCS, vol. 10012, pp. 3–14. Springer, Cham (2016). doi:10.1007/978-3-319-46982-9_1
Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30206-3_12
Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: past, present, future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16. Springer, Heidelberg (2005). doi:10.1007/11603009_2
Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006). doi:10.1007/11867340_20
Maler, O., Nickovic, D., Pnueli, A.: Checking temporal properties of discrete, timed and continuous behaviors. In: Avron, A., Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol. 4800, pp. 475–505. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78127-1_26
Manna, Z., Pnueli, A.: The anchored version of the temporal framework. In: Bakker, J.W., Roever, W.-P., Rozenberg, G. (eds.) REX 1988. LNCS, vol. 354, pp. 201–284. Springer, Heidelberg (1989). doi:10.1007/BFb0013024
Nickovic, D.: Checking timed and hybrid properties: theory and applications. Ph.D. thesis, Université Joseph Fourier, Grenoble, France (2008)
Nivat, M., Perrin, D.: Ensembles reconnaissables de mots bi-infinis. In: STOC, pp. 47–59. ACM (1982)
Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57 (1977)
Pnueli, A.: The temporal semantics of concurrent programs. Theor. Comput. Sci. 13, 45–60 (1981)
Prior, A.N.: Past, present and future, vol. 154 (1967)
Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer pairs for system health management of real-time systems. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 357–372. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8_24
Ulus, D., Ferrère, T., Asarin, E., Maler, O.: Timed pattern matching. In: Legay, A., Bozga, M. (eds.) FORMATS 2014. LNCS, vol. 8711, pp. 222–236. Springer, Cham (2014). doi:10.1007/978-3-319-10512-3_16
Van Benthem, J., Pacuit, E.: The tree of knowledge in action: towards a common perspective (2006)
Vardi, M.Y.: From church and prior to PSL. In: Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000, pp. 150–171. Springer, Heidelberg (2008). doi:10.1007/978-3-540-69850-0_10
Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: LICS (1986)
Venema, Y.: A modal logic for chopping intervals. J. Log. Comput. 1(4), 453–476 (1991)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Asarin, E., Maler, O., Nickovic, D., Ulus, D. (2017). Combining the Temporal and Epistemic Dimensions for MTL Monitoring. In: Abate, A., Geeraerts, G. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2017. Lecture Notes in Computer Science(), vol 10419. Springer, Cham. https://doi.org/10.1007/978-3-319-65765-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-65765-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65764-6
Online ISBN: 978-3-319-65765-3
eBook Packages: Computer ScienceComputer Science (R0)