Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Power Allocation Algorithm for Heterogeneous Cellular Networks Based on Energy Harvesting

  • Conference paper
  • First Online:
Communications and Networking (ChinaCom 2016)

Abstract

Cellular network can use renewable energy through energy harvesting technology in green communication. In this paper, power allocation for heterogeneous cellular networks (HetNets) with energy harvesting is proposed to maximize the system energy efficiency. Considering the minimal transmit rate of the users and the battery capacity of the system, a low complexity power allocation algorithm based on fractional programming is proposed to maximize the energy efficiency of the system. Simulation results demonstrate the effectiveness of the proposed algorithm.

This work was partially supported by the National Natural Science Foundation of China (No. 11502039), Scientific and Technological Research Program of Chongqing Municipal Education Commission (No. KJ1600424), PhD research startup foundation of Chongqing University of Posts and Telecommunications (No. A2015-41), and the Science Research Project of Chongqing University of Posts and Telecommunications for Young Scholars (No. A2015-62).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Hossain, E., Hasan, M.: 5G cellular: key enabling technologies and research challenges. IEEE Instrum. Meas. Mag. 18(3), 11–21 (2015)

    Article  Google Scholar 

  2. Liu, D.T., Wang, L.F., et al.: User association in 5G networks: a survey and an outlook. IEEE Commun. Surv. Tutor. 18(2), 1018–1044 (2016)

    Article  Google Scholar 

  3. Yang, H.H., Lee, J., Quek, T.Q.S.: Heterogeneous cellular network with energy harvesting-based D2D communication. IEEE Trans. Wirel. Commun. 15(2), 1406–1419 (2016)

    Article  Google Scholar 

  4. Diamantoulakis, P.D., Pappi, K.N., Karagiannidis, G.K., Poor, H.V.: Autonomous energy harvesting base stations with minimum storage requirements. IEEE Wirel. Commun. Lett. 4(3), 265–268 (2015)

    Article  Google Scholar 

  5. Zhang, T., Xu, H., Liu, D., Beaulieu, N.C., Zhu, Y.: User association for energy-load tradeoffs in Hetnets with renewable energy supply. IEEE Commun. Lett. 19(12), 2214–2217 (2015)

    Article  Google Scholar 

  6. Gong, J., Zho, S., Zhou, Z., Niu, Z.: Downlink base station cooperation with energy harvesting. In: 2014 IEEE International Conference on Communication Systems (ICCS), Macau, pp. 87–91 (2014)

    Google Scholar 

  7. Reyhanian, N., Maham, B., Shah-Mansouri, V., Yuen, C.: A matching-game-based energy trading for small cell networks with energy harvesting. In: 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, pp. 1579–1583 (2015)

    Google Scholar 

  8. Ng, D.W.K., Lo, E.S., Schober, R.: Energy-efficient resource allocation in OFDMA systems with hybrid energy harvesting base station. IEEE Trans. Wirel. Commun. 12(7), 3412–3427 (2013)

    Article  Google Scholar 

  9. Mao, Y., Zhang, J., Letaief, K.B.: A lyapunov optimization approach for green cellular networks with hybrid energy supplies. IEEE J. Sel. Areas Commun. 33(12), 2463–2477 (2015)

    Article  Google Scholar 

  10. Gorlatova, M., Wallwater, A., Zussman, G.: Networking low-power energy harvesting devices: measurements and algorithms. In: Proceedings of IEEE International Conference on Computer Communications (INFOCOM), Shanghai (2011)

    Google Scholar 

  11. Dinkelbach, W.: On nonlinear fractional programming. Manag. Sci. 13, 492–498 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  12. Schaible, S., Ibaraki, T.: Fractional programming. Eur. J. Oper. Res. Int. J. 12(4), 325–338 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Boyd, S., Mutapcic, A.: Subgradient Methods. Notes for EE364b, Stanford University (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengqiang Wang .

Editor information

Editors and Affiliations

Appendix A

Appendix A

Energy use and storage conditions C1 and C2 can be derived as follows. Let \(S_{i,n}={\overline{\mathop L\nolimits _E } \left( {\mathop p\nolimits _{i,n}^R + \mathop p\nolimits _{i,n}^O } \right) }\) be the energy used for femtocell n in time slot i. Then, for time slot 1 to K, we have following inequality constraints.

$$\begin{array}{l} i = 1: \mathrm{{ }}\overline{\mathop L\nolimits _E } \left( {\mathop p\nolimits _{1,n}^R + \mathop p\nolimits _{1,n}^O } \right) \le \mathop {\mathop E\nolimits _{0,n} + E}\nolimits _{1,n} ,\forall n \\ i = 2: \mathrm{{ }}\overline{\mathop L\nolimits _E } \left( {\mathop p\nolimits _{2,n}^R + \mathop p\nolimits _{2,n}^O } \right) \le \mathop E\nolimits _{2,n} + \left( {\mathop E\nolimits _{0,n} + \mathop E\nolimits _{1,n} } \right) - \mathop S\nolimits _{1,n} ,\forall n \\ \mathrm{{ = }}\mathop {\mathop E\nolimits _{0,n} + \mathop E\nolimits _{1,n} + E}\nolimits _{2,n} - \mathop S\nolimits _{1,n} \\ \vdots \\ i = K: \mathrm{{ }}\overline{\mathop L\nolimits _E } \left( {\mathop p\nolimits _{K,n}^R + \mathop p\nolimits _{K,n}^O } \right) \\ \le \mathop E\nolimits _{K,n} + \left( {\mathop E\nolimits _{0,n} + \mathop E\nolimits _{1,n} + \cdots + \mathop E\nolimits _{K - 1,n} } \right) - \left( {\mathop S\nolimits _{K-1,n} + \cdots + \mathop S\nolimits _{1,n} } \right) \\ \mathrm{{ = }}\sum \nolimits _{i = 0}^K {\mathop E\nolimits _{i,n} } - \sum \nolimits _{i = 1}^{K - 1} {\mathop S\nolimits _{i,n} } \\ \end{array}$$

therefore \(\mathrm{{ }}\mathop S\nolimits _{j,n} \mathrm{{ \le }}\sum \nolimits _{i = 0}^j {\mathop E\nolimits _{i,n} } - \sum \nolimits _{i = 1}^{j - 1} {\mathop S\nolimits _{i,n} } \) is hold for \(j=1,\cdots , K\), move the item \(\sum \nolimits _{i = 1}^{j- 1} {\mathop S\nolimits _{i,n} } \) from the right side to the left side, we have

$$\begin{aligned} \mathrm{{ }}\sum \nolimits _{i = {1,n}}^j {\mathop S\nolimits _{i,n} } \mathrm{{ \le }}\sum \nolimits _{i = 0}^j {\mathop E\nolimits _{i,n} } \end{aligned}$$
(11)

substitute \(S_{i,n}={\overline{\mathop L\nolimits _E } \left( {\mathop p\nolimits _{i,n}^R + \mathop p\nolimits _{i,n}^O } \right) }\) into (11), we have

$$\sum \nolimits _{i = 1}^j {\overline{\mathop L\nolimits _E } \left( {\mathop p\nolimits _{i,n}^R + \mathop p\nolimits _{i,n}^O } \right) } \le \sum \nolimits _{i = 0}^j {\mathop E\nolimits _{i,n} ,\forall n} ;$$

Therefore C1 is hold. Meanwhile, because capacity limit of the battery, the remaining battery energy in each time slot for femtocell n cannot exceed the battery capacity, more than part of the energy will be discarded:

$$\sum \nolimits _{i = 0}^j {\mathop E\nolimits _{i,n} } - \sum \nolimits _{i = 1}^j {\mathop S\nolimits _i } \le \mathop E\nolimits _{\max ,n} $$

for each time slot \(j=1,\cdots ,K\),then we have

$$ \sum \nolimits _{i = 0}^j {\mathop E\nolimits _{i,n} } - \sum \nolimits _{i = 1}^j {\overline{\mathop L\nolimits _E } \left( {\mathop p\nolimits _{i,n}^R + \mathop p\nolimits _{i,n}^O } \right) } \le \mathop E\nolimits _{\max ,n} $$

Therefore C2 is hold.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Wan, X., Feng, X., Wang, Z., Fan, Z. (2018). Power Allocation Algorithm for Heterogeneous Cellular Networks Based on Energy Harvesting. In: Chen, Q., Meng, W., Zhao, L. (eds) Communications and Networking. ChinaCom 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 210. Springer, Cham. https://doi.org/10.1007/978-3-319-66628-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66628-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66627-3

  • Online ISBN: 978-3-319-66628-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics