Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Robust Detection in Leak-Prone Population Protocols

  • Conference paper
  • First Online:
DNA Computing and Molecular Programming (DNA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10467))

Included in the following conference series:

  • 1333 Accesses

Abstract

In contrast to electronic computation, chemical computation is noisy and susceptible to a variety of sources of error, which has prevented the construction of robust complex systems. To be effective, chemical algorithms must be designed with an appropriate error model in mind. Here we consider the model of chemical reaction networks that preserve molecular count (population protocols), and ask whether computation can be made robust to a natural model of unintended “leak” reactions. Our definition of leak is motivated by both the particular spurious behavior seen when implementing chemical reaction networks with DNA strand displacement cascades, as well as the unavoidable side reactions in any implementation due to the basic laws of chemistry. We develop a new “Robust Detection” algorithm for the problem of fast (logarithmic time) single molecule detection, and prove that it is robust to this general model of leaks. Besides potential applications in single molecule detection, the error-correction ideas developed here might enable a new class of robust-by-design chemical algorithms. Our analysis is based on a non-standard hybrid argument, combining ideas from discrete analysis of population protocols with classic Markov chain techniques.

D. Alistarh—Supported by an SNF Ambizione Fellowship.

A. Kosowski—Supported by Inria project GANG, ANR project DESCARTES, and NCN grant 2015/17/B/ST6/01897.

D. Soloveichik—Supported by NSF grants CCF-1618895 and CCF-1652824.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gopalkrishnan, M.: Catalysis in reaction networks. Bull. Math. Biol. 73(12), 2962–2982 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Soloveichik, D., Seelig, G., Winfree, E.: DNA as a universal substrate for chemical kinetics. Proc. Natl. Acad. Sci. 107(12), 5393–5398 (2010)

    Article  Google Scholar 

  3. Cardelli, L.: Two-domain DNA strand displacement. Math. Struct. Comput. Sci. 23(02), 247–271 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y.-J., Dalchau, N., Srinivas, N., Phillips, A., Cardelli, L., Soloveichik, D., Seelig, G.: Programmable chemical controllers made from DNA. Nat. Nanotechnol. 8(10), 755–762 (2013)

    Article  Google Scholar 

  5. Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318(5853), 1121–1125 (2007)

    Article  Google Scholar 

  6. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distrib. Comput. 18, 235–253 (2006). Preliminary version appeared in PODC 2004

    Article  MATH  Google Scholar 

  7. Karp, R.M., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading. In: 41st Annual Symposium on Foundations of Computer Science, FOCS 2000, pp. 565–574, IEEE Computer Society (2000)

    Google Scholar 

  8. Hopfield, J.J.: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci. 71(10), 4135–4139 (1974)

    Article  Google Scholar 

  9. Thachuk, C., Winfree, E., Soloveichik, D.: Leakless DNA strand displacement systems. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 133–153. Springer, Cham (2015)

    Chapter  Google Scholar 

  10. Angluin, D., Aspnes, J., Eisenstat, D.: A simple population protocol for fast robust approximate majority. Distrib. Comput. 21(2), 87–102 (2008)

    Article  MATH  Google Scholar 

  11. Cardelli, L.: Morphisms of reaction networks that couple structure to function. BMC Syst. Biol. 8(1), 84 (2014)

    Article  Google Scholar 

  12. Pittel, B.: On spreading a rumor. SIAM J. Appl. Math. 47(1), 213–223 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Doerr, B., Doerr, C., Moran, S., Moran, S.: Simple and optimal randomized fault-tolerant rumor spreading. Distrib. Comput. 29(2), 89–104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Boczkowski, L., Korman, A., Natale, E.: Minimizing message size in stochastic communication patterns: fast self-stabilizing protocols with 3 bits. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pp. 2540–2559

    Google Scholar 

  15. Dudek, B., Kosowski, A.: Spreading a confirmed rumor: A case for oscillatory dynamics, CoRR, vol. abs/1705.09798 (2017)

    Google Scholar 

  16. Soloveichik, D.: Robust stochastic chemical reaction networks and bounded tau-leaping. J. Comput. Biol. 16(3), 501–522 (2009)

    Article  MathSciNet  Google Scholar 

  17. http://users.ece.utexas.edu/~soloveichik/crnsimulator.html

Download references

Acknowledgments

We thank Lucas Boczkowski and Luca Cardelli for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Uznański .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Alistarh, D., Dudek, B., Kosowski, A., Soloveichik, D., Uznański, P. (2017). Robust Detection in Leak-Prone Population Protocols. In: Brijder, R., Qian, L. (eds) DNA Computing and Molecular Programming. DNA 2017. Lecture Notes in Computer Science(), vol 10467. Springer, Cham. https://doi.org/10.1007/978-3-319-66799-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66799-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66798-0

  • Online ISBN: 978-3-319-66799-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics