Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Fuzzy Restricted Boltzmann Machines

  • Conference paper
  • First Online:
Fuzzy Logic in Intelligent System Design (NAFIPS 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 648))

Included in the following conference series:

Abstract

Restricted Boltzmann Machines are a reconstructive neural network. They derive an implicitly probabilistic model of data which can be used to reconstruct or filter missing data as well as to classify data. This paper develops a deterministic training algorithm and shows how to use that algorithm to automatically derive fuzzy membership classes. The algorithm developed in this paper combines many of the best features of fuzzy learning algorithms and Restricted Boltzmann machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The MNIST character recognition set [9, 15] consists of a set of 70,000 hand drawn characters divided into 60,000 training samples and 10,000 test samples.

References

  1. Abu-halaweh, N.M., Harrison, R.W.: Practical fuzzy decision trees. In: 2009 IEEE Symposium on Computational Intelligence and Data Mining, pp. 211–216, March 2009

    Google Scholar 

  2. Abu-halaweh, N.M., Harrison, R.W.: Identifying essential features for the classification of real and pseudo microRNAs precursors using fuzzy decision trees. In: 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 1–7, May 2010

    Google Scholar 

  3. Durham, E.E.A., Yu, X., Harrison, R.W.: FDT 2.0: improving scalability of the fuzzy decision tree induction tool - integrating database storage. In: 2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE), pp. 187–190, December 2014

    Google Scholar 

  4. Fischer, A., Igel, C.: Training restricted Boltzmann machines: an introduction. Pattern Recogn. 47(1), 25–39 (2014)

    Article  MATH  Google Scholar 

  5. Hebb, D.O.: Organization of Behavior. Wiley, New York (1949)

    Google Scholar 

  6. Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)

    Article  MATH  Google Scholar 

  7. Hinton, G.: UTML TR 2010003 A Practical Guide to Training Restricted Boltzmann Machines (2010). http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

  8. Howard, M., Pincus, J., Wing, J.: Measuring relative attack surfaces. In: Computer Security in the 21st Century, pp. 109–137 (2005)

    Google Scholar 

  9. LeCunn, Y., Cortes, C., Burges, C.J.C.: (2017). http://yann.lecun.com/exdb/mnist/

  10. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  11. MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003). http://www.cambridge.org/0521642981, http://www.inference.phy.cam.ac.uk/mackay/itila/

    MATH  Google Scholar 

  12. McMillen, T., Simen, P., Behseta, S.: Hebbian learning in linear-nonlinear networks with tuning curves leads to near-optimal, multi-alternative decision making. Neural Netw. 24(5), 417–426 (2011). http://www.sciencedirect.com/science/article/pii/S0893608011000293

    Article  Google Scholar 

  13. Salakhutdinov, R., Hinton, G.E.: An efficient learning procedure for deep Boltzmann machines. Neural Comput. 24(8), 1967–2006 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Wang, L., Singhal, A., Jajodia, S.: Toward measuring network security using attack graphs. In: Proceedings of the 2007 ACM Workshop on Quality of Protection, pp. 49–54. ACM (2007)

    Google Scholar 

  15. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Harrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Harrison, R.W., Freas, C. (2018). Fuzzy Restricted Boltzmann Machines. In: Melin, P., Castillo, O., Kacprzyk, J., Reformat, M., Melek, W. (eds) Fuzzy Logic in Intelligent System Design. NAFIPS 2017. Advances in Intelligent Systems and Computing, vol 648. Springer, Cham. https://doi.org/10.1007/978-3-319-67137-6_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67137-6_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67136-9

  • Online ISBN: 978-3-319-67137-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics