Abstract
Restricted Boltzmann Machines are a reconstructive neural network. They derive an implicitly probabilistic model of data which can be used to reconstruct or filter missing data as well as to classify data. This paper develops a deterministic training algorithm and shows how to use that algorithm to automatically derive fuzzy membership classes. The algorithm developed in this paper combines many of the best features of fuzzy learning algorithms and Restricted Boltzmann machines.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abu-halaweh, N.M., Harrison, R.W.: Practical fuzzy decision trees. In: 2009 IEEE Symposium on Computational Intelligence and Data Mining, pp. 211–216, March 2009
Abu-halaweh, N.M., Harrison, R.W.: Identifying essential features for the classification of real and pseudo microRNAs precursors using fuzzy decision trees. In: 2010 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology, pp. 1–7, May 2010
Durham, E.E.A., Yu, X., Harrison, R.W.: FDT 2.0: improving scalability of the fuzzy decision tree induction tool - integrating database storage. In: 2014 IEEE Symposium on Computational Intelligence in Healthcare and e-health (CICARE), pp. 187–190, December 2014
Fischer, A., Igel, C.: Training restricted Boltzmann machines: an introduction. Pattern Recogn. 47(1), 25–39 (2014)
Hebb, D.O.: Organization of Behavior. Wiley, New York (1949)
Hinton, G.E.: Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)
Hinton, G.: UTML TR 2010003 A Practical Guide to Training Restricted Boltzmann Machines (2010). http://www.cs.toronto.edu/~hinton/absps/guideTR.pdf
Howard, M., Pincus, J., Wing, J.: Measuring relative attack surfaces. In: Computer Security in the 21st Century, pp. 109–137 (2005)
LeCunn, Y., Cortes, C., Burges, C.J.C.: (2017). http://yann.lecun.com/exdb/mnist/
Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml
MacKay, D.J.C.: Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cambridge (2003). http://www.cambridge.org/0521642981, http://www.inference.phy.cam.ac.uk/mackay/itila/
McMillen, T., Simen, P., Behseta, S.: Hebbian learning in linear-nonlinear networks with tuning curves leads to near-optimal, multi-alternative decision making. Neural Netw. 24(5), 417–426 (2011). http://www.sciencedirect.com/science/article/pii/S0893608011000293
Salakhutdinov, R., Hinton, G.E.: An efficient learning procedure for deep Boltzmann machines. Neural Comput. 24(8), 1967–2006 (2012)
Wang, L., Singhal, A., Jajodia, S.: Toward measuring network security using attack graphs. In: Proceedings of the 2007 ACM Workshop on Quality of Protection, pp. 49–54. ACM (2007)
Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Harrison, R.W., Freas, C. (2018). Fuzzy Restricted Boltzmann Machines. In: Melin, P., Castillo, O., Kacprzyk, J., Reformat, M., Melek, W. (eds) Fuzzy Logic in Intelligent System Design. NAFIPS 2017. Advances in Intelligent Systems and Computing, vol 648. Springer, Cham. https://doi.org/10.1007/978-3-319-67137-6_43
Download citation
DOI: https://doi.org/10.1007/978-3-319-67137-6_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67136-9
Online ISBN: 978-3-319-67137-6
eBook Packages: EngineeringEngineering (R0)