Abstract
Previous studies have identified disordered functional (from fMRI) and structural (from diffusion MRI) brain connectivities in Autism Spectrum Disorder (ASD). However, ‘shape connections’ between brain regions were rarely investigated in ASD – e.g., how morphological attributes of a specific brain region (e.g., sulcal depth) change in relation to morphological attributes in other regions. In this paper, we use conventional T1-w MRI to define morphological connectivity networks, each quantifying shape similarity between different cortical regions for a specific cortical attribute at both low-order and high-order levels. For ASD identification, we present a connectomic manifold learning framework, which learns multiple kernels to estimate a similarity measure between ASD and normal controls (NC) connectomic features, to perform dimensionality reduction for clustering ASD and NC subjects. We benchmark our ASD identification method against supervised and unsupervised state-of-the-art methods, while depicting the most discriminative high- and low-order relationships between morphological regions in the left and right hemispheres.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
http://fcon_1000.projects.nitrc.org/indi/abide/.
References
Price, T., Wee, C.-Y., Gao, W., Shen, D.: Multiple-network classification of childhood autism using functional connectivity dynamics. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 177–184. Springer, Cham (2014). doi:10.1007/978-3-319-10443-0_23
Koshino, H., Carpenter, P.A., Minshew, N.J., Cherkassky, V.L., Keller, T.A., Just, M.A.: Functional connectivity in an fMRI working memory task in high-functioning autism. Neuroimage 24, 810–21 (2005)
Uddin, L.Q., Supekar, K., Lynch, C.J., Khouzam, A., Phillips, J., Feinstein, C., Ryali, S., Menon, V.: Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry 70, 869–879 (2013)
Liu, M., Du, J., Jie, B., Zhang, D.: Ordinal patterns for connectivity networks in brain disease diagnosis. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 1–9. Springer, Cham (2016). doi:10.1007/978-3-319-46720-7_1
Ghanbari, Y., Smith, A.R., Schultz, R.T., Verma, R.: Connectivity subnetwork learning for pathology and developmental variations. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 90–97. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40811-3_12
Jbabdi, S., Johansen-Berg, H.: Tractography: where do we go from here? Brain Connect 1, 169–183 (2012)
Smith, E., Thurm, A., Greenstein, D., Farmer, C., Swedo, S., Giedd, J., Raznahan, A.: Cortical thickness change in autism during early childhood. Hum. Brain Mapp. 37, 2616–2629 (2016)
Chen, X., Zhang, H., Shen, D.: Ensemble hierarchical high-order functional connectivity networks for MCI classification. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 18–25. Springer, Cham (2016). doi:10.1007/978-3-319-46723-8_3
Brown, C., Hamarneh, G.: Machine learning on human connectome data from MRI, arXiv:1611.08699v1 (2016)
Iidaka, T.: Resting state functional magnetic resonance imaging and neural network classified autism and control. Cortex 63, 55–67 (2014). Elsevier
Li, H., Xue, Z., Ellmore, T.M., Frye, R.E., Wong, S.T.: Identification of faulty DTI-based sub-networks in autism using network regularized SVM. In: IEEE ISBI (2012)
Wang, X., Sontag, D., Wang, F.: Unsupervised learning of disease progression models. In: Proceedings of the KDD 2014, pp. 85–94 (2014)
Gao, H., et al.: Identifying connectome module patterns via new balanced multi-graph normalized cut. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 169–176. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_21
Chen, H., Iraji, A., Jiang, X., Lv, J., Kou, Z., Liu, T.: Longitudinal analysis of brain recovery after mild traumatic brain injury based on groupwise consistent brain network clusters. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 194–201. Springer, Cham (2015). doi:10.1007/978-3-319-24571-3_24
Wang, B., Zhu, J., Pierson, E., Ramazzotti, D., Batzoglou, S.: Visualization and analysis of single-cell RNA-SEQ data by kernel-based similarity learning. Nature 70, 869–79 (2017)
Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)
Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C., Jagust, W., Trojanowski, J.Q., Toga, A.W., Beckett, L.: The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clin. North Am. 10, 869–877 (2005)
Joe, H., Ward, J.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58, 236–244 (1963)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Soussia, M., Rekik, I. (2017). High-order Connectomic Manifold Learning for Autistic Brain State Identification. In: Wu, G., Laurienti, P., Bonilha, L., Munsell, B. (eds) Connectomics in NeuroImaging. CNI 2017. Lecture Notes in Computer Science(), vol 10511. Springer, Cham. https://doi.org/10.1007/978-3-319-67159-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-67159-8_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67158-1
Online ISBN: 978-3-319-67159-8
eBook Packages: Computer ScienceComputer Science (R0)