Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Balancing Performance and Energy for Lightweight Data Compression Algorithms

  • Conference paper
  • First Online:
New Trends in Databases and Information Systems (ADBIS 2017)

Abstract

Energy consumption becomes more and more a critical design factor, whereby performance is still an important requirement. Thus, a balance between performance and energy has to be established. To tackle that issue for database systems, we proposed the concept of work-energy profiles. However, generating such profiles requires extensive benchmarking. To overcome that, we propose to approximate work-energy-profiles for complex operations based on the profiles of low-level operations in this paper. To show the feasibility of our approach, we use lightweight data compression algorithms as complex operations, since compression as well as decompression are heavily used in in-memory database systems, where data is always managed in a compressed representation. Furthermore, we evaluate our approach on a concrete hardware system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, D.J., et al.: Integrating compression and execution in column-oriented database systems. In: SIGMOD (2006)

    Google Scholar 

  2. Damme, P., et al.: Lightweight data compression algorithms: an experimental survey (experiments and analyses). In: EDBT (2017)

    Google Scholar 

  3. Firasta, N., et al.: Intel AVX: new frontiers in performance improvements and energy efficiency. Intel White Paper (2008)

    Google Scholar 

  4. Götz, S., et al.: Energy-efficient databases using sweet spot frequencies. In: UCC 2014 (2014)

    Google Scholar 

  5. Harizopoulos, S., et al.: Energy efficiency: the new holy grail of data management systems research. In: CIDR (2009)

    Google Scholar 

  6. Hildebrandt, J., Habich, D., Damme, P., Lehner, W.: Compression-aware in-memory query processing: vision, system design and beyond. In: Blanas, S., Bordawekar, R., Lahiri, T., Levandoski, J., Pavlo, A. (eds.) IMDM/ADMS -2016. LNCS, vol. 10195, pp. 40–56. Springer, Cham (2017). doi:10.1007/978-3-319-56111-0_3

    Chapter  Google Scholar 

  7. Karnagel, T., et al.: Adaptive work placement for query processing on heterogeneous computing resources. PVLDB 10(7), 733–744 (2017)

    Google Scholar 

  8. Kissinger, T., et al.: ERIS: a numa-aware in-memory storage engine for analytical workload. In: ADMS@VLDB, pp. 74–85 (2014)

    Google Scholar 

  9. Le Sueur, E., et al.: Dynamic voltage and frequency scaling: the laws of diminishing returns. In: Proceedings of the 2010 International Conference on Power Aware Computing and Systems, pp. 1–8 (2010)

    Google Scholar 

  10. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vectorization. Softw. Pract. Exper. 45(1) (2015)

    Google Scholar 

  11. Mühlbauer, T., Rödiger, W., Seilbeck, R., Kemper, A., Neumann, T.: Heterogeneity-conscious parallel query execution: getting a better mileage while driving faster! In: DaMoN@SIGMOD (2014)

    Google Scholar 

  12. Ungethüm, A., et al.: Energy elasticity on heterogeneous hardware using adaptive resource reconfiguration LIVE. In: SIGMOD, pp. 2173–2176 (2016)

    Google Scholar 

  13. Ungethüm, A., Kissinger, T., Habich, D., Lehner, W.: Work-energy profiles: general approach and in-memory database application. In: Nambiar, R., Poess, M. (eds.) TPCTC 2016. LNCS, vol. 10080, pp. 142–158. Springer, Cham (2017). doi:10.1007/978-3-319-54334-5_10

    Chapter  Google Scholar 

  14. Willhalm, T., et al.: Simd-scan: ultra fast in-memory table scan using on-chip vector processing units. PVLDB 2(1), 385–394 (2009)

    Google Scholar 

  15. Xu, Z., et al.: Dynamic energy estimation of query plans in database systems. In: 2013 IEEE 33rd International Conference on Distributed Computing Systems (ICDCS), pp. 83–92. IEEE (2013)

    Google Scholar 

Download references

Acknowledgments

This work is partly funded within the DFG-CRC 912 (HAEC) and by the DFG-project LE-1416/26.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annett Ungethüm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ungethüm, A., Damme, P., Pietrzyk, J., Krause, A., Habich, D., Lehner, W. (2017). Balancing Performance and Energy for Lightweight Data Compression Algorithms. In: Kirikova, M., et al. New Trends in Databases and Information Systems. ADBIS 2017. Communications in Computer and Information Science, vol 767. Springer, Cham. https://doi.org/10.1007/978-3-319-67162-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67162-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67161-1

  • Online ISBN: 978-3-319-67162-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics