Abstract
The last few years have witnessed the coming of age of data-driven paradigm in various aspects of computing (partly) empowered by advances in distributed system research (cloud computing, MapReduce, etc.). In this paper, we observe that the benefits can flow the opposite direction: the design and management of networked systems can be improved by data-driven paradigm. To this end, we present DDN, a new design framework for network protocols based on data-driven paradigm. We argue that DDN has the potential to significantly achieve better performance through harnessing more data than one single flow. Furthermore, we systematize existing instantiations of DDN by creating a unified framework for DDN, and use the framework to shed light on the common challenges and reusable design principles. We believe that by systematizing this paradigm as a broader community, we can unleash the unharnessed potential of DDN.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A session could be an application session (e.g., video session, web session), or a transport session (e.g., TCP session).
- 2.
We use “client” to denote where a session is actually run.
References
ACM SIGCOMM Workshop on QoE-Based Analysis and Management of Data Communication Networks (Internet-QoE 2016). http://conferences.sigcomm.org/sigcomm/2016/qoe.php
Bringing Data-Driven SDN to the Network Edge. https://www.sdxcentral.com/articles/contributed/network-edge-bringing-data-driven-sdn-to-the-network-edge-nick-kephart/2015/03/
Emulab. https://www.emulab.net/
ESPN, Inc., Fact Sheet. http://espnmediazone.com/us/espn-inc-fact-sheet/
Periscope. https://www.periscope.tv/
Technical note on the CFA algorithm. https://www.cs.cmu.edu/dda_technote.pdf
The Data-Driven Approach to Network Management: Innovation Delivered. http://www.research.att.com/articles/featured_stories/2010_05/201005_networkmain2_article.html
Twitch.tv. https://www.twitch.tv/
US Census: City and Town Totals. http://www.census.gov/popest/data/cities/totals/2015/files/SUB-EST2015_ALL.csv
U.S. online video platforms in September 2012. http://www.statista.com/statistics/271607/video-platforms-in-the-us-by-number-of-video-streams/
Abdallah, C.T., Byrne, R., Benites-Read, J., Dorato, P.: Delayed positive feedback can stabilize oscillatory systems. In: Proceedings of ACC (American control conference) (1993)
Agarwal, A., Bird, S., Cozowicz, M., Hoang, L., Langford, J., Lee, S., Li, J., Melamed, D., Oshri, G., Ribas, O., et al.: A multiworld testing decision service. arXiv preprint arXiv:1606.03966 (2016)
Chen, F., Zhang, C., Wang, F., Liu, J.: Crowdsourced live streaming over the cloud. In: INFOCOM (2015)
Clark, D.D., Partridge, C., Ramming, J.C., Wroclawski, J.T.: A knowledge plane for the internet. In: ACM SIGCOMM 2003
Crankshaw, D., Bailis, P., Gonzalez, J.E., Li, H., Zhang, Z., Franklin, M.J., Ghodsi, A., Jordan, M.I.: The missing piece in complex analytics: low latency, scalable model management and serving with velox. In: Conference on Innovative Data Systems Research (CIDR) (2015)
Datta, A., Sen, S., Zick, Y.: Algorithmic transparency via quantitative input influence. In: Proceedings of 37th IEEE Symposium on Security and Privacy (2016)
Dong, M., Li, Q., Zarchy, D., Godfrey, P.B., Schapira, M.: PCC: re-architecting congestion control for consistent high performance. In: Proceedings of NSDI (2015)
Dudík, M., Langford, J., Li, L.: Doubly robust policy evaluation and learning. In: Proceedings of International Conference on Machine Learning (2011)
Dukkipati, N., Refice, T., Cheng, Y., Chu, J., Herbert, T., Agarwal, A., Jain, A., Sutin, N.: An argument for increasing TCP’s initial congestion window. ACM SIGCOMM CCR 40, 27–33 (2010)
Floyd, S., Jacobson, V.: Random early detection gateways for congestion avoidance. IEEE/ACM Trans. Netw. 1(4), 397–413 (1993)
Floyd, S., Paxson, V.: Difficulties in simulating the internet. IEEE/ACM Trans. Netw. (ToN) 9(4), 392–403 (2001)
Ganjam, A., Sekar, V., Zhang, H.: In-situ quality of experience monitoring: the case for prioritizing coverage over fidelity
Ganjam, A., Siddiqi, F., Zhan, J., Stoica, I., Jiang, J., Sekar, V., Zhang, H.: C3: internet-scale control plane for video quality optimization. In: NSDI. USENIX (2015)
Halevy, A., Norvig, P., Pereira, F.: The unreasonable effectiveness of data. IEEE Intell. Syst. 24(2), 8–12 (2009)
Haq, O., Dogar, F.R.: Leveraging the power of cloud for reliable wide area communication. In: ACM Workshop on Hot Topics in Networks (2015)
Huang, T.-Y., Handigol, N., Heller, B., McKeown, N., Johari, R.: Confused, timid, and unstable: picking a video streaming rate is hard. In: Proceedings of SIGCOMM IMC (2012)
Jacobson, V.: Congestion avoidance and control. ACM SIGCOMM Comput. Commun. Rev. 18, 314–329 (1988). ACM
Jacobson, V., Smetters, D.K., Thornton, J.D., Plass, M.F., Briggs, N.H., Braynard, R.L.: Networking named content. In: Proceedings of CoNext (2009)
Jiang, J., Das, R., Anathanarayanan, G., Chou, P., Padmanabhan, V., Sekar, V., Dominique, E., Goliszewski, M., Kukoleca, D., Vafin, R., Zhang, H.: VIA: improving internet telephony call quality using predictive relay selection. To Appear in Proceedings of SIGCOMM (2016)
Jiang, J., Liu, X., Sekar, V., Stoica, I., Zhang, H.: EONA: Experience-Oriented Network Architecture. In: ACM HotNets (2014)
Jiang, J., Sekar, V., Milner, H., Shepherd, D., Stoica, I., Zhang, H.: CFA: a practical prediction system for video QoE optimization. In Proceedings of NSDI (2016)
Jiang, J., Sekar, V., Zhang, H.: Improving fairness, efficiency, and stability in HTTP-based adaptive streaming with festive. In: ACM CoNEXT 2012
Kandoi, R., Antikainen, M.: Denial-of-service attacks in OpenFlow SDN networks. In: 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 1322-1326. IEEE (2015)
Krishnan, S., Sitaraman, R.: Video stream quality impacts viewer behavior: inferring causality using quasi-experimental designs (2012)
Krishnan, S.S., Sitaraman, R.K.: Video stream quality impacts viewer behavior: inferring causality using quasi-experimental designs. IEEE/ACM Trans. Netw. 21(6), 2001–2014 (2013)
Kumar, A., Jain, S., Naik, U., Raghuraman, A., Kasinadhuni, N., Zermeno, E.C., Gunn, C.S., Ai, J., Carlin, B., Amarandei-Stavila, M., et al.: BwE: flexible, hierarchical bandwidth allocation for WAN distributed computing. In: Proceedings of SIGCOMM (2015)
Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th International Conference on World Wide Web, pp. 661–670. ACM (2010)
Liu, H.H., Viswanathan, R., Calder, M., Akella, A., Mahajan, R., Padhye, J., Zhang, M.: Efficiently delivering online services over integrated infrastructure. In: Proceedings of NSDI (2016)
Liu, X., Dobrian, F., Milner, H., Jiang, J., Sekar, V., Stoica, I., Zhang, H.: A case for a coordinated internet video control plane. In: ACM SIGCOMM, pp. 359–370. ACM (2012)
Lu, T., Pál, D., Pál, M.: Contextual multi-armed bandits. In: AISTATS, pp. 485–492 (2010)
Madhyastha, H.V., Isdal, T., Piatek, M., Dixon, C., Anderson, T., Krishnamurthy, A., Venkataramani, A.: iPlane: an information plane for distributed services. In: USENIX OSDI 2006
Pelsser, C., Cittadini, L., Vissicchio, S., Bush, R.: From Paris to Tokyo: on the suitability of ping to measure latency. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 427–432. ACM (2013)
Precup, D., Sutton, R.S., Singh, S.: Eligibility traces for off-policy policy evaluation. In: Proceedings of the Seventeenth International Conference on Machine Learning (2000)
Pu, Q., Ananthanarayanan, G., Bodik, P., Kandula, S., Akella, A., Bahl, P., Stoica, I.: Low latency geo-distributed data analytics. In: Proceedings of SIGCOMM (2015)
Rabkin, A., Arye, M., Sen, S., Pai, V.S., Freedman, M.J.: Aggregation and degradation in JetStream: streaming analytics in the wide area. In: Proceedings of NSDI (2014)
Rexford, J., Wang, J., Xiao, Z., Zhang, Y.: BGP routing stability of popular destinations. In: Proceedings of SIGCOMM IMW (2002)
Richard, J.-P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)
Rigollet, P., Zeevi, A.: Nonparametric bandits with covariates. In: Proceedings of the Conference on Learning Theory (2010)
Saltzer, J.H., Reed, D.P., Clark, D.D.: End-to-end arguments in system design. ACM Trans. Comput. Syst. (TOCS) 2(4), 277–288 (1984)
Seshan, S., Stemm, M., Katz, R.H.: SPAND: shared passive network performance discovery. In: USENIX Symposium on Internet Technologies and Systems, pp. 1–13 (1997)
Shalita, A., Karrer, B., Kabiljo, I., Sharma, A., Presta, A., Adcock, A., Kllapi, H., Stumm, M.: Social hash: an assignment framework for optimizing distributed systems operations on social networks. In: Proceedings of NSDI (2016)
Slivkins, A.: Contextual bandits with similarity information. J. Mach. Learn. Res. 15(1), 2533–2568 (2014)
Sun, Y., Yin, X., Jiang, J., Sekar, V., Lin, F., Wang, N., Liu, T., Sinopoli, B.: CS2P: improving video bitrate selection and adaptation with data-driven throughput prediction. To Appear in Proceedings of SIGCOMM (2016)
Vellido, A., Martin-Guerroro, J., Lisboa, P.: Making machine learning models interpretable. In: Proceedings of the 20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges, Belgium, pp. 163–172 (2012)
Venkataraman, S., Yang, Z., Franklin, M., Recht, B., Stoica, I.: Ernest: efficient performance prediction for large-scale advanced analytics. In: Proceedings of NSDI (2016)
Winstein, K., Balakrishnan, H.: TCP ex Machina: computer-generated congestion control. In: Proceedings of SIGCOMM (2013)
Acknowledgments
This research is supported in part by NSF award CNS-1345305 and NSF CISE Expeditions Award CCF-1139158, DOE Award SN10040 DE-SC0012463, and DARPA XData Award FA8750-12-2-0331, and gifts from Amazon Web Services, Google, IBM, SAP, The Thomas and Stacey Siebel Foundation, Adatao, Adobe, Apple Inc., Blue Goji, Bosch, Cisco, Cray, Cloudera, Ericsson, Facebook, Fujitsu, Guavus, HP, Huawei, Intel, Microsoft, Pivotal, Samsung, Schlumberger, Splunk, State Farm, Virdata and VMware. Junchen Jiang was supported in part by Juniper Networks Fellowship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Jiang, J., Sekar, V., Stoica, I., Zhang, H. (2017). Unleashing the Potential of Data-Driven Networking. In: Sastry, N., Chakraborty, S. (eds) Communication Systems and Networks. COMSNETS 2017. Lecture Notes in Computer Science(), vol 10340. Springer, Cham. https://doi.org/10.1007/978-3-319-67235-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-67235-9_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67234-2
Online ISBN: 978-3-319-67235-9
eBook Packages: Computer ScienceComputer Science (R0)