Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Field Deployment of the Tethered Robotic eXplorer to Map Extremely Steep Terrain

  • Conference paper
  • First Online:
Field and Service Robotics

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 5))

Abstract

Mobile robots outfitted with a supportive tether are ideal for gaining access to extreme environments for mapping when human or remote observation is not possible. This paper details a field deployment with the (TReX) to map a steep, tree-covered rock outcrop in an open-pit gravel mine. TReX is a mobile robot designed for the purpose of mapping extremely steep and cluttered environments for geologic and infrastructure inspection. Mapping is accomplished with a 2D lidar fixed to an actuated tether spool, which rotates to produce a 3D scan only when the robot drives and manages its tether. In order to handle motion distortion, we evaluate two existing, real-time approaches to estimate the trajectory of the robot and rectify individual scans before alignment into the map: (i) a continuous-time, lidar-only approach that handles asynchronous measurements using a physically motivated, constant-velocity motion prior, and (ii) a method that computes visual odometry from streaming stereo images to use as a motion estimate during scan collection.Once rectified, individual scans are matched to the global map by an efficient variant of the ICP algorithm. Our results include a comparison of estimated maps and trajectories to ground truth (measured by a remote survey station), an example of mapping in highly cluttered terrain, and lessons learned from the deployment and continued development of TReX.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Falmat XtremeNet Deep-Water Ethernet Cable—Model: FM022208-03-2K.

  2. 2.

    Fast Odometry from Vision [5], package available: https://github.com/srv/fovis.

  3. 3.

    Libpointmatcher  [11], package available: https://github.com/ethz-asl/libpointmatcher.

  4. 4.

    Sudbury Ontario, Canada: \(46^\circ 24'33.5''\)N, \(80^\circ 50'27.3''\)W.

  5. 5.

    Supplemental video: https://youtu.be/9r10kC7GTmc.

  6. 6.

    Model: Leica Nova MS50 MultiStation.

References

  1. Anderson, S., Barfoot, T.D.: Full STEAM ahead: exactly sparse gaussian process regression for batch continuous-time trajectory estimation on SE (3). In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 157–164 (2015)

    Google Scholar 

  2. Bosse, M., Zlot, R.: Continuous 3D scan-matching with a spinning 2D laser. In: 2009 IEEE International Conference on Robotics Automation (ICRA), pp. 4312–4319 (2009)

    Google Scholar 

  3. Cole, D.M., Newman, P.M.: Using laser range data for 3D SLAM in outdoor environments. In: 2006 IEEE International Conference on Robotics and Automation (ICRA), pp. 1556–1563 (2006)

    Google Scholar 

  4. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  5. Huang, A.S., Bachrach, A., Henry, P., Krainin, M., Maturana, D., Fox, D., Roy, N.: Visual odometry and mapping for autonomous flight using an RGB-D camera. In: International Symposium on Robotics Research (ISRR), pp. 1–16 (2011)

    Google Scholar 

  6. Kubelka, V., Oswald, L., Pomerleau, F., Colas, F., Svoboda, T., Reinstein, M.: Robust data fusion of multimodal sensory information for mobile robots. J. Field Robot. 32(4), 447–473 (2015)

    Article  Google Scholar 

  7. Matthews, J.B., Nesnas, I.: On the design of the axel and duaxel rovers for extreme terrain exploration. In: 2012 IEEE Aerospace Conference, pp. 1–10 (2012)

    Google Scholar 

  8. McGarey, P., Polzin, M., Barfoot, T.D.: Falling in line: visual route following on extreme terrain for a tethered mobile robot. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), (2017)

    Google Scholar 

  9. McGarey, P., Pomerleau, F., Barfoot, T.D.: System design of a tethered robotic explorer (TReX) for 3D Mapping of steep terrain and harsh environments. In: 2015 International Conference on Field Service Robotics (FSR). Springer (2015)

    Google Scholar 

  10. Osinski, G.R., Barfoot, T.D., Ghafoor, N., Izawa, M., Banerjee, N., Jasiobedzki, P., Tripp, J., Richards, R., Auclair, S., Sapers, H., Thomson, L., Flemming, R.: Lidar and the mobile Scene Modeler (mSM) as scientific tools for planetary exploration. Planet. Space Sci. 58(4), 691–700 (2010)

    Article  Google Scholar 

  11. Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing ICP variants on real-world data sets. Auton. Robots 34(3), 133–148 (2013)

    Article  Google Scholar 

  12. Smith, R., Self, M., Cheeseman, P.: Estimating uncertain spatial relationships in robotics. In: Autonomous Robot Vehicles, pp. 167–193. Springer (1990)

    Google Scholar 

  13. Wettergreen, D., Thorpe, C., Whittaker, R.: Exploring Mount Erebus by walking robot. Robot. Autonom. Syst. 11(3), 171–185 (1993)

    Article  Google Scholar 

  14. Zhang, J., Singh, S.: LOAM: lidar odometry and mapping in real-time. In: Robotics: Science and System Conference (RSS), pp. 109–111 (2014)

    Google Scholar 

  15. Zhang, J., Singh, S.: Visual-lidar odometry and mapping: low-drift, robust, and fast. In: 2015 IEEE International Conference on Robotics Automation (ICRA), pp. 2174–2181 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick McGarey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McGarey, P., Yoon, D., Tang, T., Pomerleau, F., Barfoot, T.D. (2018). Field Deployment of the Tethered Robotic eXplorer to Map Extremely Steep Terrain. In: Hutter, M., Siegwart, R. (eds) Field and Service Robotics. Springer Proceedings in Advanced Robotics, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-67361-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67361-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67360-8

  • Online ISBN: 978-3-319-67361-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics