Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deformable Registration Through Learning of Context-Specific Metric Aggregation

  • Conference paper
  • First Online:
Machine Learning in Medical Imaging (MLMI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10541))

Included in the following conference series:

Abstract

We propose a novel weakly supervised discriminative algorithm for learning context specific registration metrics as a linear combination of conventional similarity measures. Conventional metrics have been extensively used over the past two decades and therefore both their strengths and limitations are known. The challenge is to find the optimal relative weighting (or parameters) of different metrics forming the similarity measure of the registration algorithm. Hand-tuning these parameters would result in sub optimal solutions and quickly become infeasible as the number of metrics increases. Furthermore, such hand-crafted combination can only happen at global scale (entire volume) and therefore will not be able to account for the different tissue properties. We propose a learning algorithm for estimating these parameters locally, conditioned to the data semantic classes. The objective function of our formulation is a special case of non-convex function, difference of convex function, which we optimize using the concave convex procedure. As a proof of concept, we show the impact of our approach on three challenging datasets for different anatomical structures and modalities.

E. Ferrante and P.K. Dokania—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IBSR: Internet Brain Segmentation Repository. http://www.cma.mgh.harvard.edu/ibsr/

  2. Bronstein, M.M., Bronstein, A.M., Michel, F., Paragios, N.: Data fusion through cross-modality metric learning using similarity-sensitive hashing. In: CVPR 2010, pp. 3594–3601. IEEE (2010)

    Google Scholar 

  3. Cifor, A., Risser, L., Chung, D., Anderson, E.M., Schnabel, J.A.: Hybrid feature-based Log-Demons registration for tumour tracking in 2-D liver ultrasound images. In: ISBI (2012)

    Google Scholar 

  4. Cifor, A., Risser, L., Chung, D., Anderson, E.M., Schnabel, J.A.: Hybrid feature-based diffeomorphic registration for tumor tracking in 2-D liver ultrasound images. IEEE TMI 32, 1647–1656 (2013)

    Google Scholar 

  5. Glocker, B., Komodakis, N., Tziritas, G., Navab, N., Paragios, N.: Dense image registration through MRFs and efficient linear programming. Med. Image Anal. 12(6), 731–741 (2008)

    Article  Google Scholar 

  6. Joachims, T., Finley, T., Yu, C.: Cutting-plane training of structural SVMs. Mach. Learn. 77, 27–59 (2009)

    Article  MATH  Google Scholar 

  7. Komodakis, N., Tziritas, G., Paragios, N.: Fast, approximately optimal solutions for single and dynamic MRFs. In: CVPR (2007)

    Google Scholar 

  8. Lee, D., Hofmann, M., Steinke, F., Altun, Y., Cahill, N.D., Scholkopf, B.: Learning similarity measure for multi-modal 3D image registration. In: CVPR 2009, IEEE Conference on Computer Vision and Pattern Recognition, pp. 186–193. IEEE (2009)

    Google Scholar 

  9. Michel, F., Bronstein, M., Bronstein, A., Paragios, N.: Boosted metric learning for 3D multi-modal deformable registration. In: ISBI (2011)

    Google Scholar 

  10. Rueckert, D., Sonoda, L.I., et al.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE TMI 18, 712–721 (1999)

    Google Scholar 

  11. Simonovsky, M., Gutiérrez-Becker, B., Mateus, D., Navab, N., Komodakis, N.: A deep metric for multimodal registration. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 10–18. Springer, Cham (2016). doi:10.1007/978-3-319-46726-9_2

    Chapter  Google Scholar 

  12. Tang, L., Hero, A., Hamarneh, G.: Locally-adaptive similarity metric for deformable medical image registration. In: ISBI. IEEE (2012)

    Google Scholar 

  13. Taskar, B., Guestrin, C., Koller, D.: Max-margin Markov networks. In: NIPS (2003)

    Google Scholar 

  14. Toga, A.W.: Learning based coarse-to-fine image registration. In: CVPR (2008)

    Google Scholar 

  15. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learning for interdependent and structured output spaces. In: ICML (2004)

    Google Scholar 

  16. Yu, C.N., Joachims, T.: Learning structural SVMs with latent variables. In: ICML (2009)

    Google Scholar 

  17. Yuille, A., Rangarajan, A.: The concave-convex procedure. Neural Comput. 15, 915–936 (2003)

    Article  MATH  Google Scholar 

  18. Zagoruyko, S., Komodakis, N.: Learning to compare image patches via convolutional neural networks

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enzo Ferrante .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 736 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Ferrante, E., Dokania, P.K., Marini, R., Paragios, N. (2017). Deformable Registration Through Learning of Context-Specific Metric Aggregation. In: Wang, Q., Shi, Y., Suk, HI., Suzuki, K. (eds) Machine Learning in Medical Imaging. MLMI 2017. Lecture Notes in Computer Science(), vol 10541. Springer, Cham. https://doi.org/10.1007/978-3-319-67389-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67389-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67388-2

  • Online ISBN: 978-3-319-67389-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics