Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Listing Maximal Independent Sets with Minimal Space and Bounded Delay

  • Conference paper
  • First Online:
String Processing and Information Retrieval (SPIRE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10508))

Included in the following conference series:

Abstract

An independent set is a set of nodes in a graph such that no two of them are adjacent. It is maximal if there is no node outside the independent set that may join it. Listing maximal independent sets in graphs can be applied, for example, to sample nodes belonging to different communities or clusters in network analysis and document clustering. The problem has a rich history as it is related to maximal cliques, dominance sets, vertex covers and 3-colorings in graphs. We are interested in reducing the delay, which is the worst-case time between any two consecutively output solutions, and the memory footprint, which is the additional working space behind the read-only input graph.

Work partially supported by University of Pisa under PRA_2017_44 project on Advanced Computational Methodologies for the Analysis of Biomedical Data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The algorithmic techniques are different, and even the simple query asking if a path occurs in a graph is NP-hard. Nevertheless, discovering patterns in sequences and patterns in graphs are quite similar tasks, and can share techniques in some cases.

  2. 2.

    This paper has been organized so as to highlight the novelties with respect to [9].

References

  1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65(1–3), 21–46 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Basagni, S.: Finding a maximal weighted independent set in wireless networks. Telecommun. Syst. 18(1), 155–168 (2001)

    Article  MATH  Google Scholar 

  3. Brendel, W., Todorovic, S.: Segmentation as maximum-weight independent set. In: Advances in Neural Information Processing Systems, pp. 307–315 (2010)

    Google Scholar 

  4. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457). Commun. ACM 16(9), 575–576 (1973)

    Article  MATH  Google Scholar 

  5. Chang, L., Yu, J.X., Qin, L.: Fast maximal cliques enumeration in sparse graphs. Algorithmica 66(1), 173–186 (2013)

    Google Scholar 

  6. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, S., Kimelfeld, B., Sagiv, Y.: Generating all maximal induced subgraphs for hereditary and connected-hereditary graph properties. JCSS 74(7), 1147–1159 (2008)

    Google Scholar 

  8. Comin, C., Rizzi, R.: An improved upper bound on maximal clique listing via rectangular fast matrix multiplication. CoRR, abs/1506.01082 (2015)

    Google Scholar 

  9. Conte, A., Grossi, R., Marino, A., Versari, L.: Sublinear-space bounded-delay enumeration for massive network analytics: maximal cliques. In: ICALP, vol. 148, pp. 1–15 (2016)

    Google Scholar 

  10. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in large sparse real-world graphs. ACM J. Exp. Algorithmics 18 (2013). Article No. 3.1

    Google Scholar 

  11. Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world graphs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 364–375. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20662-7_31

    Chapter  Google Scholar 

  12. Fu, A.W.-C., Wu, H., Cheng, J., Wong, R.C.-W.: IS-LABEL: an independent-set based labeling scheme for point-to-point distance querying. Proc. VLDB Endow. 6(6), 457–468 (2013)

    Article  Google Scholar 

  13. Johnson, D.S., Yannakakis, M., Papadimitriou, C.H.: On generating all maximal independent sets. Inf. Proc. Lett. 27(3), 119–123 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leung, J.Y.-T.: Fast algorithms for generating all maximal independent sets of interval, circular-arc and chordal graphs. J. Algorithms 5(1), 22–35 (1984)

    Google Scholar 

  15. Li, N., Latecki, L.J.: Clustering aggregation as maximum-weight independent set. In: Advances in Neural Information Processing Systems, pp. 782–790 (2012)

    Google Scholar 

  16. Loukakis, E., Tsouros, C.: A depth first search algorithm to generate the family of maximal independent sets of a graph lexicographically. Computing 27(4), 349–366 (1981)

    Google Scholar 

  17. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In: Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272. Springer, Heidelberg (2004). doi:10.1007/978-3-540-27810-8_23

    Chapter  Google Scholar 

  18. Minty, G.J.: On maximal independent sets of vertices in claw-free graphs. J. Comb. Theor. Ser. B 28(3), 284–304 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  19. Okamoto, Y., Uno, T., Uehara, R.: Linear-time counting algorithms for independent sets in chordal graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 433–444. Springer, Heidelberg (2005). doi:10.1007/11604686_38

    Chapter  Google Scholar 

  20. Okamoto, Y., Uno, T., Uehara, R.: Counting the number of independent sets in chordal graphs. J. Discrete Algorithms 6(2), 229–242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Olteanu, A., Castillo, C., Diaz, F., Vieweg, S.: CrisisLex: a lexicon for collecting and filtering microblogged communications in crises. In: ICWSM (2014)

    Google Scholar 

  22. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. TCS 363(1), 28–42 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tsukiyama, S., Ide, M., Ariyoshi, H., Shirakawa, I.: A new algorithm for generating all the maximal independent sets. SIAM J. Comput. 6(3), 505–517 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Uno, T.: Two general methods to reduce delay and change of enumeration algorithms. National Institute of Informatics (in Japan) (2003). TR E, 4

    Google Scholar 

  25. Yu, C.-W., Chen, G.H.: Generate all maximal independent sets in permutation graphs. Int. J. Comput. Math. 47(1–2), 1–8 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Marino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Conte, A., Grossi, R., Marino, A., Uno, T., Versari, L. (2017). Listing Maximal Independent Sets with Minimal Space and Bounded Delay. In: Fici, G., Sciortino, M., Venturini, R. (eds) String Processing and Information Retrieval. SPIRE 2017. Lecture Notes in Computer Science(), vol 10508. Springer, Cham. https://doi.org/10.1007/978-3-319-67428-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67428-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67427-8

  • Online ISBN: 978-3-319-67428-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics