Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evidential Joint Calibration of Binary SVM Classifiers Using Logistic Regression

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10564))

Included in the following conference series:

Abstract

In a context of multiple classifiers, a calibration step based on logistic regression is usually used to independently transform each classifier output into a probability distribution, to be then able to combine them. This calibration has been recently refined, using the evidence theory, to better handle uncertainties. In this paper, we propose to use this logistic-based calibration in a multivariable scenario, i.e., to consider jointly all the outputs returned by the classifiers, and to extend this approach to the evidential framework. Our evidential approach was tested on generated and real datasets and presents several advantages over the probabilistic version.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bache, K., Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/ml

  2. Chang, C-C., Lin, C-J.: LIBSVM: A library for support vector machines. Trans. Intel. Syst. Technol. 2, 27:1–27:27 (2011). Software, http://www.csie.ntu.edu.tw/~cjlin/libsvm

  3. Dempster, A.P.: New methods for reasoning towards posterior distributions based on sample data. Ann. Math. Stat. 37(2), 355–374 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  4. Denœux, T.: Analysis of evidence-theoretic decision rules for pattern classification. Pattern Recogn. 30(7), 1095–1107 (1997)

    Article  Google Scholar 

  5. Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. Wiley, New York (2004)

    MATH  Google Scholar 

  6. Kanjanatarakul, O., Denœux, T., Sriboonchitta, S.: Prediction of future observations using belief functions: a likelihood-based approach. Int. J. Approximate Reasoning 72, 71–94 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kanjanatarakul, O., Sriboonchitta, S., Denœux, T.: Forecasting using belief functions: an application to marketing econometrics. Int. J. Approximate Reasoning 55(5), 1113–1128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. in large margin classifiers 10(3), 61–74 (1999)

    Google Scholar 

  9. Shafer, G.: A Mathematical Theory Of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  10. Smets, P., Kennes, R.: The transferable belief model. Artif. Intell. 66, 191–243 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu, P., Davoine, F., Zha, H., Denœux, T.: Evidential calibration of binary SVM classifiers. Int. J. Approximate Reasoning 72, 55–70 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Minary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Minary, P., Pichon, F., Mercier, D., Lefevre, E., Droit, B. (2017). Evidential Joint Calibration of Binary SVM Classifiers Using Logistic Regression. In: Moral, S., Pivert, O., Sánchez, D., Marín, N. (eds) Scalable Uncertainty Management. SUM 2017. Lecture Notes in Computer Science(), vol 10564. Springer, Cham. https://doi.org/10.1007/978-3-319-67582-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67582-4_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67581-7

  • Online ISBN: 978-3-319-67582-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics