Abstract
Earth System Model (ESM) simulations are increasingly constrained by the amount of data that they generate rather than by computational resources. The use of lossy data compression on model output can reduce storage costs and data transmission overheads, but care must be taken to ensure that science results are not impacted. Choosing appropriate compression algorithms and parameters is not trivial given the diversity of data produced by ESMs and requires an understanding of both the attributes of the data and the properties of the chosen compression methods. Here we discuss the properties of two distinct approaches for lossy compression in the context of a well-known ESM, demonstrating the different strengths of each, to motivate the development of an automated multi-method approach for compression of climate model output.
Similar content being viewed by others
References
Baker, A.H., Hammerling, D.M., Mickleson, S.A., Xu, H., Stolpe, M.B., Naveau, P., Sanderson, B., Ebert-Uphoff, I., Samarasinghe, S., De Simone, F., Carbone, F., Gencarelli, C.N., Dennis, J.M., Kay, J.E., Lindstrom, P.: Evaluating lossy data compression on climate simulation data within a large ensemble. Geosci. Model Dev. 9(12), 4381–4403 (2016). http://www.geosci-model-dev.net/9/4381/2016/
Baker, A., Xu, H., Dennis, J., Levy, M., Nychka, D., Mickelson, S., Edwards, J., Vertenstein, M., Wegener, A.: A methodology for evaluating the impact of data compression on climate simulation data. In: Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing, HPDC 2014, pp. 203–214 (2014)
Bicer, T., Yin, J., Chiu, D., Agrawal, G., Schuchardt, K.: Integrating online compression to accelerate large-scale data analytics applications. In: International Parallel and Distributed Processing Symposium, pp. 1205–1216 (2013)
Burtscher, M., Ratanaworabhan, P.: FPC: a high-speed compressor for double-precision floating-point data. IEEE Trans. Comput. 58, 18–31 (2009)
Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)
Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with SZ. In: 2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2016, Chicago, IL, USA, 23–27 May 2016, pp. 730–739 (2016). http://dx.doi.org/10.1109/IPDPS.2016.11
Fowler, J.E.: Qccpack: An open-source software library for quantization, compression, and coding. In: International Symposium on Optical Science and Technology, pp. 294–301. International Society for Optics and Photonics (2000)
Hübbe, N., Wegener, A., Kunkel, J.M., Ling, Y., Ludwig, T.: Evaluating lossy compression on climate data. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2013. LNCS, vol. 7905, pp. 343–356. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38750-0_26
Hurrell, J., Holland, M., Gent, P., Ghan, S., Kay, J., Kushner, P., Lamarque, J.F., Large, W., Lawrence, D., Lindsay, K., Lipscomb, W., Long, M., Mahowald, N., Marsh, D., Neale, R., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W., Hack, J., Kiehl, J., Marshall, S.: The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013)
Islam, A., Pearlman, W.A.: Embedded and efficient low-complexity hierarchical image coder. In: Electronic Imaging’99, pp. 294–305. International Society for Optics and Photonics (1998)
Iverson, J., Kamath, C., Karypis, G.: Fast and effective lossy compression algorithms for scientific datasets. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 843–856. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32820-6_83
Kay, J., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J., Bates, S., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., Vertenstein, M.: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability, vol. 96. Bulletin of the American Meteorological Society (2015)
Kowalik-Urbaniak, I., Brunet, D., Wang, J., Koff, D., Smolarski-Koff, N., Vrscay, E.R., Wallace, B., Wang, Z.: The quest for ‘diagnostically lossless’ medical image compression: a comparative study of objective quality metrics for compressed medical images. In: Medical Imaging 2014: Image Perception, Observer Performance, and Technology Assessment, Proceedings of SPIE. vol. 9037 (2014)
Lakshminarasimhan, S., Shah, N., Ethier, S., Klasky, S., Latham, R., Ross, R., Samatova, N.F.: Compressing the incompressible with ISABELA: in-situ reduction of spatio-temporal data. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS, vol. 6852, pp. 366–379. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23400-2_34
Laney, D., Langer, S., Weber, C., Lindstrom, P., Wegener, A.: Assessing the effects of data compression in simulations using physically motivated metrics. In: Supercomputing (SC 2013) In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC 2013. pp. 76:1–76:12 (2013)
Li, S., Gruchalla, K., Potter, K., Clyne, J., Childs, H.: Evaluating the efficacy of wavelet configurations on turbulent-flow data. In: Proceedings of IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 81–89, Chicago, IL, October 2015
Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Visual. Comput. Graph. 20(12), 2674–2683 (2014)
Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE Trans. Visual. Comput. Graph. 12, 1245–1250 (2006)
Meehl, G., Moss, R., Taylor, K., Eyring, V., Stouffer, R., Bony, S., Stevens, B.: Climate model intercomparisons: preparing for the next phase. Eos, Trans. Am. Geophys. Union 95(9), 77–78 (2014)
Paul, K., Mickelson, S., Xu, H., Dennis, J.M., Brown, D.: Light-weight parallel Python tools for earth system modeling workflows. In: IEEE International Conference on Big Data, pp. 1985–1994, October 2015
Sasaki, N., Sato, K., Endo, T., Matsuoka, S.: Exploration of lossy compression for application-level checkpoint/restart. In: Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2015, pp. 914–922 (2015)
Small, R.J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan, F., Caron, J., Dennis, J., Gent, P., Hsu, H.m., Jochum, M., Lawrence, D., Muoz, E., diNezio, P., Scheitlin, T., Tomas, R., Tribbia, J., Tseng, Y.H., Vertenstein, M.: A new synoptic scale resolving global climate simulation using the community earth system model. J. Adv. Model. Earth Syst. 6(4), 1065–1094 (2014)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wegener, A.: Compression of medical sensor data. IEEE Signal Process. Mag. 27(4), 125–130 (2010)
Woodring, J., Mniszewski, S.M., Brislawn, C.M., DeMarle, D.E., Ahrens, J.P.: Revisiting wavelet compression for large-scale climate data using JPEG2000 and ensuring data precision. In: Rogers, D., Silva, C.T. (eds.) IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 31–38. IEEE (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Baker, A.H., Xu, H., Hammerling, D.M., Li, S., Clyne, J.P. (2017). Toward a Multi-method Approach: Lossy Data Compression for Climate Simulation Data. In: Kunkel, J., Yokota, R., Taufer, M., Shalf, J. (eds) High Performance Computing. ISC High Performance 2017. Lecture Notes in Computer Science(), vol 10524. Springer, Cham. https://doi.org/10.1007/978-3-319-67630-2_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-67630-2_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67629-6
Online ISBN: 978-3-319-67630-2
eBook Packages: Computer ScienceComputer Science (R0)