Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Toward a Multi-method Approach: Lossy Data Compression for Climate Simulation Data

  • Conference paper
  • First Online:
High Performance Computing (ISC High Performance 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10524))

Included in the following conference series:

Abstract

Earth System Model (ESM) simulations are increasingly constrained by the amount of data that they generate rather than by computational resources. The use of lossy data compression on model output can reduce storage costs and data transmission overheads, but care must be taken to ensure that science results are not impacted. Choosing appropriate compression algorithms and parameters is not trivial given the diversity of data produced by ESMs and requires an understanding of both the attributes of the data and the properties of the chosen compression methods. Here we discuss the properties of two distinct approaches for lossy compression in the context of a well-known ESM, demonstrating the different strengths of each, to motivate the development of an automated multi-method approach for compression of climate model output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Baker, A.H., Hammerling, D.M., Mickleson, S.A., Xu, H., Stolpe, M.B., Naveau, P., Sanderson, B., Ebert-Uphoff, I., Samarasinghe, S., De Simone, F., Carbone, F., Gencarelli, C.N., Dennis, J.M., Kay, J.E., Lindstrom, P.: Evaluating lossy data compression on climate simulation data within a large ensemble. Geosci. Model Dev. 9(12), 4381–4403 (2016). http://www.geosci-model-dev.net/9/4381/2016/

  2. Baker, A., Xu, H., Dennis, J., Levy, M., Nychka, D., Mickelson, S., Edwards, J., Vertenstein, M., Wegener, A.: A methodology for evaluating the impact of data compression on climate simulation data. In: Proceedings of the 23rd International Symposium on High-Performance Parallel and Distributed Computing, HPDC 2014, pp. 203–214 (2014)

    Google Scholar 

  3. Bicer, T., Yin, J., Chiu, D., Agrawal, G., Schuchardt, K.: Integrating online compression to accelerate large-scale data analytics applications. In: International Parallel and Distributed Processing Symposium, pp. 1205–1216 (2013)

    Google Scholar 

  4. Burtscher, M., Ratanaworabhan, P.: FPC: a high-speed compressor for double-precision floating-point data. IEEE Trans. Comput. 58, 18–31 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 45, 485–560 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Di, S., Cappello, F.: Fast error-bounded lossy HPC data compression with SZ. In: 2016 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2016, Chicago, IL, USA, 23–27 May 2016, pp. 730–739 (2016). http://dx.doi.org/10.1109/IPDPS.2016.11

  7. Fowler, J.E.: Qccpack: An open-source software library for quantization, compression, and coding. In: International Symposium on Optical Science and Technology, pp. 294–301. International Society for Optics and Photonics (2000)

    Google Scholar 

  8. Hübbe, N., Wegener, A., Kunkel, J.M., Ling, Y., Ludwig, T.: Evaluating lossy compression on climate data. In: Kunkel, J.M., Ludwig, T., Meuer, H.W. (eds.) ISC 2013. LNCS, vol. 7905, pp. 343–356. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38750-0_26

    Chapter  Google Scholar 

  9. Hurrell, J., Holland, M., Gent, P., Ghan, S., Kay, J., Kushner, P., Lamarque, J.F., Large, W., Lawrence, D., Lindsay, K., Lipscomb, W., Long, M., Mahowald, N., Marsh, D., Neale, R., Rasch, P., Vavrus, S., Vertenstein, M., Bader, D., Collins, W., Hack, J., Kiehl, J., Marshall, S.: The community earth system model: a framework for collaborative research. Bull. Am. Meteorol. Soc. 94, 1339–1360 (2013)

    Article  Google Scholar 

  10. Islam, A., Pearlman, W.A.: Embedded and efficient low-complexity hierarchical image coder. In: Electronic Imaging’99, pp. 294–305. International Society for Optics and Photonics (1998)

    Google Scholar 

  11. Iverson, J., Kamath, C., Karypis, G.: Fast and effective lossy compression algorithms for scientific datasets. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012. LNCS, vol. 7484, pp. 843–856. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32820-6_83

    Chapter  Google Scholar 

  12. Kay, J., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J., Bates, S., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.F., Lawrence, D., Lindsay, K., Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., Vertenstein, M.: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability, vol. 96. Bulletin of the American Meteorological Society (2015)

    Google Scholar 

  13. Kowalik-Urbaniak, I., Brunet, D., Wang, J., Koff, D., Smolarski-Koff, N., Vrscay, E.R., Wallace, B., Wang, Z.: The quest for ‘diagnostically lossless’ medical image compression: a comparative study of objective quality metrics for compressed medical images. In: Medical Imaging 2014: Image Perception, Observer Performance, and Technology Assessment, Proceedings of SPIE. vol. 9037 (2014)

    Google Scholar 

  14. Lakshminarasimhan, S., Shah, N., Ethier, S., Klasky, S., Latham, R., Ross, R., Samatova, N.F.: Compressing the incompressible with ISABELA: in-situ reduction of spatio-temporal data. In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011. LNCS, vol. 6852, pp. 366–379. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23400-2_34

    Chapter  Google Scholar 

  15. Laney, D., Langer, S., Weber, C., Lindstrom, P., Wegener, A.: Assessing the effects of data compression in simulations using physically motivated metrics. In: Supercomputing (SC 2013) In: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, SC 2013. pp. 76:1–76:12 (2013)

    Google Scholar 

  16. Li, S., Gruchalla, K., Potter, K., Clyne, J., Childs, H.: Evaluating the efficacy of wavelet configurations on turbulent-flow data. In: Proceedings of IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 81–89, Chicago, IL, October 2015

    Google Scholar 

  17. Lindstrom, P.: Fixed-rate compressed floating-point arrays. IEEE Trans. Visual. Comput. Graph. 20(12), 2674–2683 (2014)

    Article  Google Scholar 

  18. Lindstrom, P., Isenburg, M.: Fast and efficient compression of floating-point data. IEEE Trans. Visual. Comput. Graph. 12, 1245–1250 (2006)

    Article  Google Scholar 

  19. Meehl, G., Moss, R., Taylor, K., Eyring, V., Stouffer, R., Bony, S., Stevens, B.: Climate model intercomparisons: preparing for the next phase. Eos, Trans. Am. Geophys. Union 95(9), 77–78 (2014)

    Article  Google Scholar 

  20. Paul, K., Mickelson, S., Xu, H., Dennis, J.M., Brown, D.: Light-weight parallel Python tools for earth system modeling workflows. In: IEEE International Conference on Big Data, pp. 1985–1994, October 2015

    Google Scholar 

  21. Sasaki, N., Sato, K., Endo, T., Matsuoka, S.: Exploration of lossy compression for application-level checkpoint/restart. In: Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium, IPDPS 2015, pp. 914–922 (2015)

    Google Scholar 

  22. Small, R.J., Bacmeister, J., Bailey, D., Baker, A., Bishop, S., Bryan, F., Caron, J., Dennis, J., Gent, P., Hsu, H.m., Jochum, M., Lawrence, D., Muoz, E., diNezio, P., Scheitlin, T., Tomas, R., Tribbia, J., Tseng, Y.H., Vertenstein, M.: A new synoptic scale resolving global climate simulation using the community earth system model. J. Adv. Model. Earth Syst. 6(4), 1065–1094 (2014)

    Google Scholar 

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. Wegener, A.: Compression of medical sensor data. IEEE Signal Process. Mag. 27(4), 125–130 (2010)

    Article  Google Scholar 

  25. Woodring, J., Mniszewski, S.M., Brislawn, C.M., DeMarle, D.E., Ahrens, J.P.: Revisiting wavelet compression for large-scale climate data using JPEG2000 and ensuring data precision. In: Rogers, D., Silva, C.T. (eds.) IEEE Symposium on Large Data Analysis and Visualization (LDAV), pp. 31–38. IEEE (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allison H. Baker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Baker, A.H., Xu, H., Hammerling, D.M., Li, S., Clyne, J.P. (2017). Toward a Multi-method Approach: Lossy Data Compression for Climate Simulation Data. In: Kunkel, J., Yokota, R., Taufer, M., Shalf, J. (eds) High Performance Computing. ISC High Performance 2017. Lecture Notes in Computer Science(), vol 10524. Springer, Cham. https://doi.org/10.1007/978-3-319-67630-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67630-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67629-6

  • Online ISBN: 978-3-319-67630-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics