Abstract
We propose a method to predict the subject-specific longitudinal progression of brain structures extracted from baseline MRI, and evaluate its performance on Alzheimer’s disease data. The disease progression is modeled as a trajectory on a group of diffeomorphisms in the context of large deformation diffeomorphic metric mapping (LDDMM). We first exhibit the limited predictive abilities of geodesic regression extrapolation on this group. Building on the recent concept of parallel curves in shape manifolds, we then introduce a second predictive protocol which personalizes previously learned trajectories to new subjects, and investigate the relative performances of two parallel shifting paradigms. This design only requires the baseline imaging data. Finally, coefficients encoding the disease dynamics are obtained from longitudinal cognitive measurements for each subject, and exploited to refine our methodology which is demonstrated to successfully predict the follow-up visits.
A. Bône and M. Louis—Equal contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. IJCV 61(2), 139–157 (2005)
Durrleman, S., Allassonnière, S., Joshi, S.: Sparse adaptive parameterization of variability in image ensembles. IJCV 101(1), 161–183 (2013)
Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G., Trouvé, A.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014)
Fishbaugh, J., Prastawa, M., Gerig, G., Durrleman, S.: Geodesic regression of image and shape data for improved modeling of 4D trajectories. In: Proceedings of the International Symposium on Biomedical Imaging (2014)
Fletcher, T.: Geodesic regression and the theory of least squares on riemannian manifolds. IJCV 105(2), 171–185 (2013)
Hadj-Hamou, M., Lorenzi, M., Ayache, N., Pennec, X.: Longitudinal analysis of image time series with diffeomorphic deformations: A computational framework based on stationary velocity fields. Front. Neurosci. 10, 236 (2016)
Hong, Y., Singh, N., Kwitt, R., Niethammer, M.: Time-warped geodesic regression. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 105–112. Springer, Cham (2014). doi:10.1007/978-3-319-10470-6_14
Lorenzi, M., Ayache, N., Frisoni, G., Pennec, X.: 4D registration of serial brain MR images: a robust measure of changes applied to Alzheimer’s disease. In: MICCAI, Spatio Temporal Image Analysis Workshop (STIA) (2010)
Lorenzi, M., Ayache, N., Pennec, X.: Schild’s ladder for the parallel transport of deformations in time series of images. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 463–474. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22092-0_38
Lorenzi, M., Pennec, X.: Geodesics, parallel transport & one-parameter subgroups for diffeomorphic image registration. IJCV 105(2), 111–127 (2013)
Metz, C., Klein, S., Schaap, M., van Walsum, T., Niessen, W.: Nonrigid registration of dynamic medical imaging data using nD + t B-splines and a groupwise optimization approach. Med. Image Anal. 15(2), 238–249 (2011)
Peyrat, J.-M., Delingette, H., Sermesant, M., Pennec, X., Xu, C., Ayache, N.: Registration of 4D time-series of cardiac images with multichannel diffeomorphic demons. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008. LNCS, vol. 5242, pp. 972–979. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85990-1_117
Qiu, A., Younes, L., Miller, M.I., Csernansky, J.G.: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer’s type. NeuroImage 40(1), 68–76 (2008)
Schiratti, J.B., Allassonnière, S., Colliot, O., Durrleman, S.: Learning spatiotemporal trajectories from manifold-valued longitudinal data. In: NIPS, vol. 28 (2015)
Singh, N., Hinkle, J., Joshi, S., Fletcher, P.T.: Hierarchical geodesic models in diffeomorphisms. IJCV 117(1), 70–92 (2016)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75759-7_39
Wang, L., Beg, F., Ratnanather, T., Ceritoglu, C., Younes, L., Morris, J.C., Csernansky, J.G., Miller, M.I.: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the Alzheimer type. IEEE Trans. Med. Imaging 26(4), 462–470 (2007)
Wu, G., Wang, Q., Lian, J., Shen, D.: Estimating the 4D respiratory lung motion by spatiotemporal registration and building super-resolution image. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6891, pp. 532–539. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23623-5_67
Younes, L.: Jacobi fields in groups of diffeomorphisms and applications. Q. Appl. Math. 65(1), 113–134 (2007)
Acknowledgments
This work has been partly funded by the European Research Council (ERC) under grant agreement No 678304, European Union’s Horizon 2020 research and innovation program under grant agreement No 666992, and the program Investissements d’avenir ANR-10-IAIHU-06.
Author information
Authors and Affiliations
Consortia
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Bône, A. et al. (2017). Prediction of the Progression of Subcortical Brain Structures in Alzheimer’s Disease from Baseline. In: Cardoso, M., et al. Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics. GRAIL MICGen MFCA 2017 2017 2017. Lecture Notes in Computer Science(), vol 10551. Springer, Cham. https://doi.org/10.1007/978-3-319-67675-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-67675-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67674-6
Online ISBN: 978-3-319-67675-3
eBook Packages: Computer ScienceComputer Science (R0)