Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Graph Geodesics to Find Progressively Similar Skin Lesion Images

  • Conference paper
  • First Online:
Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics (GRAIL 2017, MICGen 2017, MFCA 2017)

Abstract

Skin conditions represent an enormous health care burden worldwide, and as datasets of skin images grow, there is continued interest in computerized approaches to analyze skin images. In order to explore and gain insights into datasets of skin images, we propose a graph based approach to visualize a progression of similar skin images between pairs of images. In our graph, a node represents both a clinical and dermoscopic image of the same lesion, and an edge between nodes captures the visual dissimilarity between lesions, where dissimilarity is computed by comparing the image responses of a pretrained convolutional neural network. We compute the geodesic/shortest path between nodes to determine a path of progressively visually similar skin lesions. To quantitatively evaluate the quality of the returned path, we propose metrics to measure the number of transitions with respect to the lesion diagnosis, and the progression with respect to the clinical 7-point checklist. Compared to baseline experiments, our approach shows improvements to the quality of the returned paths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Argenziano, G., Fabbrocini, G., Carli, P., Vincenzo, D.G., Sammarco, E., Delfino, M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions. Comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134(12), 1563–1570 (1998)

    Article  Google Scholar 

  2. Argenziano, G., Soyer, H.P., Giorgio, V.D., Piccolo, D., Carli, P., Delfino, M., Ferrari, A., Hofmann-Wellenhof, R., Massi, D., Mazzocchetti, G., Scal-venzi, M., Wolf, I.H.: Interactive atlas of dermoscopy: a tutorial (Book and CD-ROM) (2000)

    Google Scholar 

  3. Bunte, K., Biehl, M., Jonkman, M.F., Petkov, N.: Learning effective color features for content based image retrieval in dermatology. Pattern Recogn. 44(9), 1892–1902 (2011)

    Article  Google Scholar 

  4. Duffy, K., Grossman, D.: The dysplastic nevus: from historical perspective to management in the modern era: Part I. Historical, histologic, and clinical aspects. J. Am. Acad. Dermatol. 67(1), 1–27 (2012)

    Article  Google Scholar 

  5. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  6. Hay, R.J., Johns, N.E., Williams, H.C., Bolliger, I.W., Dellavalle, R.P., Margolis, D.J., Marks, R., Naldi, L., Weinstock, M.A., Wulf, S.K., Michaud, C., Murray, J.L.C., Naghavi, M.: The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J. Invest. Dermatol. 134, 1527–1534 (2014)

    Article  Google Scholar 

  7. Hegde, C., Sankaranarayanan, A.C., Baraniuk, R.G.: Learning manifolds in the wild. J. Mach. Learn. Res. 5037 (2012)

    Google Scholar 

  8. Jia, H., Wu, G., Wang, Q., Wang, Y., Kim, M., Shen, D.: Directed graph based image registration. In: Suzuki, K., Wang, F., Shen, D., Yan, P. (eds.) MLMI 2011. LNCS, vol. 7009, pp. 175–183. Springer, Heidelberg (2011). doi:10.1007/978-3-642-24319-6_22

    Chapter  Google Scholar 

  9. Kawahara, J., BenTaieb, A., Hamarneh, G.: Deep features to classify skin lesions. In: IEEE ISBI, pp. 1397–1400 (2016)

    Google Scholar 

  10. Kawahara, J., Hamarneh, G.: Image content-based navigation of skin conditions. In: World Congress of Dermatology (2015)

    Google Scholar 

  11. Klingemann, M., Doury, S.: X Degrees of Separation (2016). https://artsexperiments.withgoogle.com/xdegrees/

  12. Kogan, G.: Shortest path between images (2017). https://github.com/ml4a/ml4a-guides/blob/master/notebooks/image-path.ipynb

  13. Korotkov, K., Garcia, R.: Computerized analysis of pigmented skin lesions: a review. Artif. Intell. Med. 56(2), 69–90 (2012)

    Article  Google Scholar 

  14. Markovic, S., Erickson, L.A., Rao, R., Creagan, E.T., et al.: Malignant melanoma in the 21st century, Part 1: epidemiology, risk factors, screening, prevention, and diagnosis. Mayo Clin. Proc. 82(3), 364–380 (2007)

    Article  Google Scholar 

  15. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vision (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  16. Schofield, J.K., Fleming, D., Grindlay, D., Williams, H.: Skin conditions are the commonest new reason people present to general practitioners in England and Wales. Br. J. Dermatol. 165, 1044–1050 (2011)

    Article  Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations Learning Representations (ICLR) (2015)

    Google Scholar 

Download references

Acknowledgments

Thanks to the Natural Sciences and Engineering Research Council (NSERC) of Canada for funding and to the NVIDIA Corporation for the donation of a Titan X GPU used in this research. Thanks to Sara Daneshvar for preparing the data used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan Hamarneh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kawahara, J., Moriarty, K.P., Hamarneh, G. (2017). Graph Geodesics to Find Progressively Similar Skin Lesion Images. In: Cardoso, M., et al. Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics. GRAIL MICGen MFCA 2017 2017 2017. Lecture Notes in Computer Science(), vol 10551. Springer, Cham. https://doi.org/10.1007/978-3-319-67675-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67675-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67674-6

  • Online ISBN: 978-3-319-67675-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics