Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Prognostic Role of Genes with Skewed Expression Distribution in Lung Adenocarcinoma

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering (IScIDE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10559))

Abstract

Many studies assumed gene expression to be normally distributed. However, some were found to have left-skewed distribution, while others have right-skewed distribution. Here, we investigated the gene expression distribution of five lung adenocarcinoma data sets. We assumed that samples in the tail and non-tail of a skewed distribution were drawn from different populations with different survival outcomes. To investigate this hypothesis, skewed genes were detected to build a tail indicator matrix comprising of binary values. Survival analysis revealed that patients with more skewed genes in their tails had worse survival. Hierarchical clustering of the tail indicator matrices discovered a gene set with similar tail configurations for either left or right skewed genes. The two gene sets divided patients into three groups with different survivals. In conclusion, there is a direct association between genes with skewed distribution and the prognosis of lung adenocarcinoma patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Der, S.D., Sykes, J., Pintilie, M., Zhu, C.Q., Strumpf, D., Liu, N., Jurisica, I., Shepherd, F.A., Tsao, M.S.: Validation of a histology-independent prognostic gene signature for early-stage, non-small-cell lung cancer including stage IA patients. J. Thorac. Oncol. 9(1), 59–64 (2014)

    Article  Google Scholar 

  2. Gjerstorff, M.F., Pøhl, M., Olsen, K.E., Ditzel, H.J.: Analysis of GAGE, NY-ESO-1 and SP17 cancer/testis antigen expression in early stage non-small cell lung carcinoma. BMC Cancer 13(1), 466 (2013)

    Article  Google Scholar 

  3. Goldman, M., Craft, B., Swatloski, T., Cline, M., Morozova, O., Diekhans, M., Haussler, D., Zhu, J.: The UCSC cancer genomics browser: update 2015. Nucleic Acids Res. 43, D812–D817 (2014)

    Article  Google Scholar 

  4. Guo, Y., Sheng, Q., Li, J., Ye, F., Samuels, D.C., Shyr, Y.: Large scale comparison of gene expression levels by microarrays and RNAseq using TCGA data. PLoS one 8(8), e71462 (2013)

    Article  Google Scholar 

  5. Li, C.M.C., Gocheva, V., Oudin, M.J., Bhutkar, A., Wang, S.Y., Date, S.R., Ng, S.R., Whittaker, C.A., Bronson, R.T., Snyder, E.L., et al.: Foxa2 and Cdx2 cooperate with NKX2-1 to inhibit lung adenocarcinoma metastasis. Genes devel. 29(17), 1850–1862 (2015)

    Article  Google Scholar 

  6. Marko, N.F., Weil, R.J.: Non-gaussian distributions affect identification of expression patterns, functional annotation, and prospective classification in human cancer genomes. PLoS one 7(10), e46935 (2012)

    Article  Google Scholar 

  7. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.C., Lin, C.C., Meyer, M.D.: Package e1071 (2017)

    Google Scholar 

  8. Network, C.G.A.R., et al.: Comprehensive molecular profiling of lung adenocarcinoma. Nature 511(7511), 543–550 (2014)

    Article  Google Scholar 

  9. Okayama, H., Kohno, T., Ishii, Y., Shimada, Y., Shiraishi, K., Iwakawa, R., Furuta, K., Tsuta, K., Shibata, T., Yamamoto, S., et al.: Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 72(1), 100–111 (2012)

    Article  Google Scholar 

  10. Sayers, E.W., Barrett, T., Benson, D.A., Bolton, E., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., DiCuccio, M., Federhen, S., et al.: Database resources of the national center for biotechnology information. Nucleic Acids Res. 39(suppl 1), D38–D51 (2011)

    Article  Google Scholar 

  11. Schabath, M.B., Welsh, E.A., Fulp, W.J., Chen, L., Teer, J.K., Thompson, Z.J., Engel, B.E., Xie, M., Berglund, A.E., Creelan, B.C., et al.: Differential association of STK11 and TP53 with KRAS mutation-associated gene expression, proliferation and immune surveillance in lung adenocarcinoma. Oncogene 35, 3209 (2015)

    Article  Google Scholar 

  12. Shedden, K., Taylor, J.M., Enkemann, S.A., Tsao, M.S., Yeatman, T.J., Gerald, W.L., Eschrich, S., Jurisica, I., Giordano, T.J., Misek, D.E., et al.: Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat. Med. 14(8), 822–827 (2008)

    Article  Google Scholar 

  13. Stewart, B., Wild, C.P., et al.: World cancer report 2014 (2014)

    Google Scholar 

  14. Taguchi, A., Hanash, S., Rundle, A., McKeague, I.W., Tang, D., Darakjy, S., Gaziano, J.M., Sesso, H.D., Perera, F.: Circulating pro-surfactant protein B as a risk biomarker for lung cancer. Cancer Epidemiol. Prev. Biomark. 22(10), 1756–1761 (2013)

    Article  Google Scholar 

  15. Thomas, R., de la Torre, L., Chang, X., Mehrotra, S.: Validation and characterization of DNA microarray gene expression data distribution and associated moments. BMC Bioinform. 11(1), 576 (2010)

    Article  Google Scholar 

  16. Trost, B., Moir, C.A., Gillespie, Z.E., Kusalik, A., Mitchell, J.A., Eskiw, C.H.: Concordance between RNA-sequencing data and DNA microarray data in transcriptome analysis of proliferative and quiescent fibroblasts. Roy. Soc. Open Sci. 2(9), 150402 (2015)

    Article  Google Scholar 

  17. Wang, Y., Yang, W., Pu, Q., Yang, Y., Ye, S., Ma, Q., Ren, J., Cao, Z., Zhong, G., Zhang, X., et al.: The effects and mechanisms of SLC34A2 in tumorigenesis and progression of human non-small cell lung cancer. J. Biomed. Sci. 22(1), 52 (2015)

    Article  Google Scholar 

  18. Watanabe, H., Francis, J.M., Woo, M.S., Etemad, B., Lin, W., Fries, D.F., Peng, S., Snyder, E.L., Tata, P.R., Izzo, F., et al.: Integrated cistromic and expression analysis of amplified NKX2-1 in lung adenocarcinoma identifies LMO3 as a functional transcriptional target. Genes Dev. 27(2), 197–210 (2013)

    Article  Google Scholar 

  19. Winslow, M.M., Dayton, T.L., Verhaak, R.G., Kim-Kiselak, C., Snyder, E.L., Feldser, D.M., Hubbard, D.D., DuPage, M.J., Whittaker, C.A., Hoersch, S., et al.: Suppression of lung adenocarcinoma progression by NKX2-1. Nature 473(7345), 101–104 (2011)

    Article  Google Scholar 

  20. Zhao, S., Fung-Leung, W.P., Bittner, A., Ngo, K., Liu, X.: Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PloS one 9(1), e78644 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Zhi-Yuan chair professorship start-up grant (WF220103010) from Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chen, Y., Tu, S., Xu, L. (2017). The Prognostic Role of Genes with Skewed Expression Distribution in Lung Adenocarcinoma. In: Sun, Y., Lu, H., Zhang, L., Yang, J., Huang, H. (eds) Intelligence Science and Big Data Engineering. IScIDE 2017. Lecture Notes in Computer Science(), vol 10559. Springer, Cham. https://doi.org/10.1007/978-3-319-67777-4_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67777-4_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67776-7

  • Online ISBN: 978-3-319-67777-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics