Abstract
The established construction of hierarchical B-splines starts from a given sequence of nested spline spaces. In this paper we generalize this approach to sequences formed by spaces that are only partially nested. This enables us to choose from a greater variety of refinement options while constructing the underlying grid. We identify assumptions that allow to define a hierarchical spline basis, to establish a truncation mechanism, and to derive a completeness result. Finally, we present an application to surface approximation that demonstrates the potential of the proposed generalization.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bornemann, P.B., Cirak, F.: A subdivision-based implementation of the hierarchical B-spline finite element method. Comput. Methods Appl. Mech. Eng. 253, 584–598 (2013)
Buffa, A., Giannelli, C.: Adaptive isogeometric methods with hierarchical splines: error estimator and convergence. Math. Methods Appl. Sci. 26, 1–25 (2016)
Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided Geom. Des. 30, 331–356 (2013)
Engleitner, N., Jüttler, B.: Patchwork B-spline refinement. In: Computer-Aided Design, vol. 90, pp. 168–179 (2017). ISSN 0010-4485. https://doi.org/10.1016/j.cad.2017.05.021
Evans, E.J., Scott, M.A., Li, X., Thomas, D.C.: Hierarchical T-splines: analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 1–20 (2015)
Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. Comput. Graph. 22, 205–212 (1988)
Giannelli, C., Jüttler, B., Kleiss, S.K., Mantzaflaris, A., Simeon, B., Špeh, J.: THB-splines: an effective mathematical technology for adaptive refinement in geometric design and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 299, 337–365 (2016)
Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Des. 29, 485–498 (2012)
Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comput. Math. 40(2), 459–490 (2014)
Greiner, G., Hormann, K.: Interpolating and approximating scattered 3D-data with hierarchical tensor product B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods. Innovations in Applied Mathematics, pp. 163–172. Vanderbilt University Press, Nashville (1997)
Kang, H., Chen, F., Deng, J.: Hierarchical B-splines on regular triangular partitions. Graph. Models 76(5), 289–300 (2014)
Kiss, G., Giannelli, C., Zore, U., Jüttler, B., Großmann, D., Barner, J.: Adaptive CAD model (re-)construction with THB-splines. Graph. Models 76(5), 273–288 (2014)
Kosinka, J., Sabin, M., Dodgson, N.: Subdivision surfaces with creases and truncated multiple knot lines. Comput. Graph. Forum 23, 118–128 (2014)
Kraft, R.: Adaptive und linear unabhängige Multilevel B-Splines und ihre Anwendungen. Ph.D. thesis, Universität Stuttgart (1998)
Kuru, G., Verhoosel, C.V., van der Zeeb, K.G., van Brummelen, E.H.: Goal-adaptive isogeometric analysis with hierarchical splines. Comput. Methods Appl. Mech. Eng. 270, 270–292 (2014)
Li, X., Chen, F.L., Kang, H.M., Deng, J.S.: A survey on the local refinable splines. Sci. China Math. 59(4), 617–644 (2016)
Li, X., Deng, J., Chen, F.: Polynomial splines over general T-meshes. Visual Comput. 26, 277–286 (2010)
Li, X., Zheng, J., Sederberg, T.W., Hughes, T.J.R., Scott, M.A.: On linear independence of T-spline blending functions. Comput. Aided Geom. Des. 29, 63–76 (2012)
Mokriš, D., Jüttler, B., Giannelli, C.: On the completeness of hierarchical tensor-product B-splines. J. Comput. Appl. Math. 271, 53–70 (2014)
Schillinger, D., Dedé, L., Scott, M.A., Evans, J.A., Borden, M.J., Rank, E., Hughes, T.J.R.: An isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces. Comput. Methods Appl. Mech. Eng. 249–252, 116–150 (2012)
Speleers, H., Dierckx, P., Vandewalle, S.: Quasi-hierarchical Powell-Sabin B-splines. Comput. Aided Geom. Des. 26, 174–191 (2009)
Speleers, H., Manni, C.: Effortless quasi-interpolation in hierarchical spaces. Numer. Math. 132(1), 155–184 (2016)
Wei, X., Zhang, Y., Hughes, T.J.R., Scott, M.A.: Extended truncated hierarchical Catmull-Clark subdivision. Comput. Methods Appl. Mech. Eng. 299, 316–336 (2016)
Zore, U., Jüttler, B.: Adaptively refined multilevel spline spaces from generating systems. Comput. Aided Geom. Des. 31, 545–566 (2014)
Zore, U., Jüttler, B., Kosinka, J.: On the linear independence of truncated hierarchical generating systems. J. Comput. Appl. Math. 306, 200–216 (2016)
Acknowledgment
Supported by project NFN S117 “Geometry + Simulation” of the Austrian Science Fund and the EC projects “EXAMPLE”, GA no. 324340 and “MOTOR”, GA no. 678727.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Engleitner, N., Jüttler, B., Zore, U. (2017). Partially Nested Hierarchical Refinement of Bivariate Tensor-Product Splines with Highest Order Smoothness. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2016. Lecture Notes in Computer Science(), vol 10521. Springer, Cham. https://doi.org/10.1007/978-3-319-67885-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-67885-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-67884-9
Online ISBN: 978-3-319-67885-6
eBook Packages: Computer ScienceComputer Science (R0)