Abstract
In this paper, we introduce a novel vision system for robotized weed control on various weed recognition tasks. Initially, we present a robotic platform and its camera setup, that can be used in crop-based and grassland-based weed control tasks. Then, we develop our proposed vision system for robotic application, using a weed recognition framework. The resulting system derives from a sequence of state-of-the-art processes including image preprocessing, feature extraction and detection, codebook learning, feature encoding, image representation and classification. Our novel system is optimized using a dataset which represents a crop-based weed control problem of thistles in sugar beet plantation. Moreover, we apply the proposed vision system to a grassland-based weed recognition problem, the control of the Broad-leaved Dock (Rumex obtusifolius L.). It is experimentally shown that our proposed visual system yields state-of-the-art recognition in both examined datasets, while presenting advantages in terms of autonomy and precision over competing methodologies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kargar, A.H.B., Shirzadifar, A.M.: Automatic weed detection system and smart herbicide sprayer robot for corn fields. In: 2013 1st RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 468–473. IEEE, February 2013
Wong, W., Chekima, A., Mariappan, M., Khoo, B., Nadarajan, M.: Probabilistic multi SVM weed species classification for weed scouting and selective spot weeding. In: 2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), pp. 63–68. IEEE, December 2014
Pérez-Ortiz, M., Peña, J., Gutiérrez, P., Torres-Sánchez, J., Hervás-MartÃnez, C., López-Granados, F.: A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. Appl. Soft Comput. 37, 533–544 (2015)
Pérez-Ortiz, M., Peña, J.M., Gutiérrez, P.A., Torres-Sánchez, J., Hervás-MartÃnez, C., López-Granados, F.: Selecting patterns and features for between- and within-crop-row weed mapping using UAV-imagery. Expert Syst. Appl. 47(C), 85–94 (2016)
Michaels, A., Haug, S., Albert, A.: Vision-based high-speed manipulation for robotic ultra-precise weed control. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5498–5505. IEEE, September 2015
DockWeeder: The DockWeeder robot enables organic dairy farming by controlling grassland. In: European Unions Seventh Framework Programme for Research, Technological Development and Demonstration Under Grant Agreement no. 618123 [ICT-AGRI 2] (2015)
Kazmi, W., Garcia-Ruiz, F., Nielsen, J., Rasmussen, J., Andersen, H.J.: Exploiting affine invariant regions and leaf edge shapes for weed detection. Comput. Electron. Agricult. 118(C), 290–299 (2015)
Lottes, P., Hoeferlin, M., Sander, S., Muter, M., Schulze, P., Stachniss, L.C.: An effective classification system for separating sugar beets and weeds for precision farming applications. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 5157–5163. IEEE (2016)
Kounalakis, T., Triantafyllidis, G.A., Nalpantidis, L.: Weed recognition framework for robotic precision farming. In: 2016 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 466–471. IEEE, October 2016
Belongie, S., Malik, J., Puzicha, J.: Shape Context: a new descriptor for shape matching and object recognition. IN: NIPS, pp. 831–837 (2000)
Kazmi, W., Garcia-Ruiz, F.J., Nielsen, J., Rasmussen, J., Jørgen Andersen, H.: Detecting creeping thistle in sugar beet fields using vegetation indices. Comput. Electron. Agricult. 112(C), 10–19 (2015)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Nalpantidis, L., Sirakoulis, G.C., Gasteratos, A.: Review of stereo vision algorithms: from software to hardware. Int. J. Optomech. 2(4), 435–462 (2008)
Nalpantidis, L., Gasteratos, A.: Stereo vision for robotic applications in the presence of non-ideal lighting conditions. Image Vis. Comput. 28(6), 940–951 (2010)
Woebbecke, D., Meyer, G., Von Bargen, K., Mortensen, D.: Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 38(1), 259–269 (1995)
Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)
Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002). doi:10.1007/3-540-47969-4_9
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. I, pp. 886–893. IEEE (2005)
Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2548–2555. IEEE, November 2011
Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 510–517. IEEE, June 2012
Hamerly, G., Elkan, C.: Alternatives to the k-means algorithm that find better clusterings. In: Proceedings of 11th International Conference on Information and Knowledge Management, vol. 4, no, 09, pp. 600–607 (2002)
Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)
Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39(1), 1–38 (1977)
Silpa-Anan, C., Hartley, R.: Optimised KD-trees for fast image descriptor matching. In: 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–8. IEEE, June 2008
Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3360–3367. IEEE, June 2010
Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_11
Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1704–1716 (2012)
Li, F.-F., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 524–531. IEEE (2005)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE (2006)
Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005)
Acknowledgements
This work has been supported by the DockWeeder project (project ID: 30079), administered through the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 618123 [ICT-AGRI 2]. The project has received funding from the Ministry of Economic Affairs (The Netherlands), from the Federal Office for Agriculture (Switzerland), and from Innovation Fund Denmark, the Ministry of Science, Innovation and Higher Education (Denmark).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kounalakis, T., Triantafyllidis, G.A., Nalpantidis, L. (2017). Vision System for Robotized Weed Recognition in Crops and Grasslands. In: Liu, M., Chen, H., Vincze, M. (eds) Computer Vision Systems. ICVS 2017. Lecture Notes in Computer Science(), vol 10528. Springer, Cham. https://doi.org/10.1007/978-3-319-68345-4_43
Download citation
DOI: https://doi.org/10.1007/978-3-319-68345-4_43
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68344-7
Online ISBN: 978-3-319-68345-4
eBook Packages: Computer ScienceComputer Science (R0)