Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Vision System for Robotized Weed Recognition in Crops and Grasslands

  • Conference paper
  • First Online:
Computer Vision Systems (ICVS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10528))

Included in the following conference series:

  • 4315 Accesses

Abstract

In this paper, we introduce a novel vision system for robotized weed control on various weed recognition tasks. Initially, we present a robotic platform and its camera setup, that can be used in crop-based and grassland-based weed control tasks. Then, we develop our proposed vision system for robotic application, using a weed recognition framework. The resulting system derives from a sequence of state-of-the-art processes including image preprocessing, feature extraction and detection, codebook learning, feature encoding, image representation and classification. Our novel system is optimized using a dataset which represents a crop-based weed control problem of thistles in sugar beet plantation. Moreover, we apply the proposed vision system to a grassland-based weed recognition problem, the control of the Broad-leaved Dock (Rumex obtusifolius L.). It is experimentally shown that our proposed visual system yields state-of-the-art recognition in both examined datasets, while presenting advantages in terms of autonomy and precision over competing methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kargar, A.H.B., Shirzadifar, A.M.: Automatic weed detection system and smart herbicide sprayer robot for corn fields. In: 2013 1st RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 468–473. IEEE, February 2013

    Google Scholar 

  2. Wong, W., Chekima, A., Mariappan, M., Khoo, B., Nadarajan, M.: Probabilistic multi SVM weed species classification for weed scouting and selective spot weeding. In: 2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA), pp. 63–68. IEEE, December 2014

    Google Scholar 

  3. Pérez-Ortiz, M., Peña, J., Gutiérrez, P., Torres-Sánchez, J., Hervás-Martínez, C., López-Granados, F.: A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. Appl. Soft Comput. 37, 533–544 (2015)

    Article  Google Scholar 

  4. Pérez-Ortiz, M., Peña, J.M., Gutiérrez, P.A., Torres-Sánchez, J., Hervás-Martínez, C., López-Granados, F.: Selecting patterns and features for between- and within-crop-row weed mapping using UAV-imagery. Expert Syst. Appl. 47(C), 85–94 (2016)

    Article  Google Scholar 

  5. Michaels, A., Haug, S., Albert, A.: Vision-based high-speed manipulation for robotic ultra-precise weed control. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5498–5505. IEEE, September 2015

    Google Scholar 

  6. DockWeeder: The DockWeeder robot enables organic dairy farming by controlling grassland. In: European Unions Seventh Framework Programme for Research, Technological Development and Demonstration Under Grant Agreement no. 618123 [ICT-AGRI 2] (2015)

    Google Scholar 

  7. Kazmi, W., Garcia-Ruiz, F., Nielsen, J., Rasmussen, J., Andersen, H.J.: Exploiting affine invariant regions and leaf edge shapes for weed detection. Comput. Electron. Agricult. 118(C), 290–299 (2015)

    Article  Google Scholar 

  8. Lottes, P., Hoeferlin, M., Sander, S., Muter, M., Schulze, P., Stachniss, L.C.: An effective classification system for separating sugar beets and weeds for precision farming applications. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 5157–5163. IEEE (2016)

    Google Scholar 

  9. Kounalakis, T., Triantafyllidis, G.A., Nalpantidis, L.: Weed recognition framework for robotic precision farming. In: 2016 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 466–471. IEEE, October 2016

    Google Scholar 

  10. Belongie, S., Malik, J., Puzicha, J.: Shape Context: a new descriptor for shape matching and object recognition. IN: NIPS, pp. 831–837 (2000)

    Google Scholar 

  11. Kazmi, W., Garcia-Ruiz, F.J., Nielsen, J., Rasmussen, J., Jørgen Andersen, H.: Detecting creeping thistle in sugar beet fields using vegetation indices. Comput. Electron. Agricult. 112(C), 10–19 (2015)

    Article  Google Scholar 

  12. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  13. Nalpantidis, L., Sirakoulis, G.C., Gasteratos, A.: Review of stereo vision algorithms: from software to hardware. Int. J. Optomech. 2(4), 435–462 (2008)

    Article  Google Scholar 

  14. Nalpantidis, L., Gasteratos, A.: Stereo vision for robotic applications in the presence of non-ideal lighting conditions. Image Vis. Comput. 28(6), 940–951 (2010)

    Article  Google Scholar 

  15. Woebbecke, D., Meyer, G., Von Bargen, K., Mortensen, D.: Color indices for weed identification under various soil, residue, and lighting conditions. Trans. ASAE 38(1), 259–269 (1995)

    Article  Google Scholar 

  16. Bosch, A., Zisserman, A., Munoz, X.: Image classification using random forests and ferns. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  17. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 128–142. Springer, Heidelberg (2002). doi:10.1007/3-540-47969-4_9

    Chapter  Google Scholar 

  18. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  19. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. I, pp. 886–893. IEEE (2005)

    Google Scholar 

  20. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: binary robust invariant scalable keypoints. In: Proceedings of IEEE International Conference on Computer Vision, pp. 2548–2555. IEEE, November 2011

    Google Scholar 

  21. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: fast retina keypoint. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 510–517. IEEE, June 2012

    Google Scholar 

  22. Hamerly, G., Elkan, C.: Alternatives to the k-means algorithm that find better clusterings. In: Proceedings of 11th International Conference on Information and Knowledge Management, vol. 4, no, 09, pp. 600–607 (2002)

    Google Scholar 

  23. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  MATH  Google Scholar 

  24. Aharon, M., Elad, M., Bruckstein, A.: K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  25. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  26. Silpa-Anan, C., Hartley, R.: Optimised KD-trees for fast image descriptor matching. In: 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pp. 1–8. IEEE, June 2008

    Google Scholar 

  27. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 3360–3367. IEEE, June 2010

    Google Scholar 

  28. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15561-1_11

    Chapter  Google Scholar 

  29. Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C.: Aggregating local image descriptors into compact codes. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1704–1716 (2012)

    Article  Google Scholar 

  30. Li, F.-F., Perona, P.: A Bayesian hierarchical model for learning natural scene categories. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 2, pp. 524–531. IEEE (2005)

    Google Scholar 

  31. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2169–2178. IEEE (2006)

    Google Scholar 

  32. Fan, R.E., Chen, P.H., Lin, C.J.: Working set selection using second order information for training support vector machines. J. Mach. Learn. Res. 6, 1889–1918 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported by the DockWeeder project (project ID: 30079), administered through the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 618123 [ICT-AGRI 2]. The project has received funding from the Ministry of Economic Affairs (The Netherlands), from the Federal Office for Agriculture (Switzerland), and from Innovation Fund Denmark, the Ministry of Science, Innovation and Higher Education (Denmark).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsampikos Kounalakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kounalakis, T., Triantafyllidis, G.A., Nalpantidis, L. (2017). Vision System for Robotized Weed Recognition in Crops and Grasslands. In: Liu, M., Chen, H., Vincze, M. (eds) Computer Vision Systems. ICVS 2017. Lecture Notes in Computer Science(), vol 10528. Springer, Cham. https://doi.org/10.1007/978-3-319-68345-4_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68345-4_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68344-7

  • Online ISBN: 978-3-319-68345-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics