Abstract
The paper proposes a new approach for a posteriori enrichment of automatic speech recognition (ASR) confusion networks (CNs). CNs are usually needed to decrease word error rate and to compute confidence measures, but they are also used in many ways in order to improve post-processing of ASR outputs. For instance, they can be helpfully used to propose alternative word hypotheses when ASR outputs are corrected by a human on post-edition. However, CNs bins do not have a fixed length, and sometimes contain only one or two word hypotheses: in this case the number of alternatives to correct a misrecognized word is very low, reducing the chance of helping the human annotator.
Our approach for CN enrichment is based on a new similarity measure presented in this paper, computed from acoustic and linguistic word embeddings, that allows us to take into consideration both acoustic and linguistic similarities between two words.
Experimental results show that our approach is relevant: enriched CNs (for a bin size equals to 6) increase the potential correction of erroneous words by 23% than initial CNs produced by an ASR system. In our experiments, a spoken language understanding task is also targeted.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Stoyanchev, S., Salletmayr, P., Yang, J., Hirschberg, J.: Localized detection of speech recognition errors. In: 2012 IEEE Spoken Language Technology Workshop (SLT), pp. 25–30. IEEE (2012)
Pincus, E., Stoyanchev, S., Hirschberg, J.: Exploring features for localized detection of speech recognition errors. In: Proceedings of the SIGDIAL Conference, pp. 132–136. ACL (2013)
Soto, V., Cooper, E., Mangu, L., Rosenberg, A., Hirschberg, J.: Rescoring confusion networks for keyword search. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 7088–7092. IEEE (2014)
Mangu, L., Brill, E., Stolcke, A.: Finding consensus in speech recognition: word error minimization and other applications of confusion networks. Comput. Speech Lang. 14(4), 373–400 (2000)
Fusayasu, Y., Tanaka, K., Takiguchi, T., Ariki, Y.: Word-error correction of continuous speech recognition based on normalized relevance distance. In: IJCAI, pp. 1257–1262 (2015)
Laurent, A., Meignier, S., Merlin, T., Deléglise, P.: Computer-assisted transcription of speech based on confusion network reordering. In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4884–4887. IEEE (2011)
Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. JMLR 3, 1137–1155 (2003). JMLR.org
Schwenk, H.: CSLM-a modular open-source continuous space language modeling toolkit. In: INTERSPEECH, pp. 1198–1202 (2013)
Ghannay, S., Favre, B., Estève, Y., Camelin, N.: Word embedding evaluation and combination. In: Language Resources and Evaluation Conference (LREC 2016), Portorož, Slovenia, 10th edn., pp. 23–28, May 2016
Levy, O., Goldberg, Y.: Dependency based word embeddings. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, vol. 2, pp. 302–308 (2014)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of Workshop at ICLR (2013)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the Empirical Methods in Natural Language Processing (EMNLP 2014), vol. 12 (2014)
Kamper, H., Wang, W., Livescu, K.: Deep convolutional acoustic word embeddings using word-pair side information. arXiv preprint arXiv:1510.01032 (2015)
Levin, K., Henry, K., Jansen, A., Livescu, K.: Fixed-dimensional acoustic embeddings of variable-length segments in low-resource settings. In: 2013 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), pp. 410–415. IEEE (2013)
Bengio, S., Heigold, G.: Word embeddings for speech recognition. In: INTERSPEECH, pp. 1053–1057 (2014)
Ghannay, S., Estève, Y., Camelin, N., Deleglise, P.: Acoustic word embeddings for ASR error detection. In: INTERSPEECH 2016, San Francisco, CA, USA, 9–12 September 2016
Wang, J., Song, Y., Leung, T., Rosenberg, C., Wang, J., Philbin, J., Chen, B., Wu, Y.: Learning fine-grained image similarity with deep ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1386–1393 (2014)
Weston, J., Bengio, S., Usunier, N.: Wsabie: scaling up to large vocabulary image annotation. In: IJCAI, vol. 11, pp. 2764–2770 (2011)
Ghannay, S., Estève, Y., Camelin, N., et al.: Evaluation of acoustic word embeddings. In: ACL 2016, p. 62 (2016)
Ghannay, S., Estève, Y., Camelin, N., Dutrey, C., Santiago, F., Adda-Decker, M.: Combining continuous word representation and prosodic features for ASR error prediction. In: Dediu, A.-H., Martín-Vide, C., Vicsi, K. (eds.) SLSP 2015. LNCS, vol. 9449, pp. 84–95. Springer, Cham (2015). doi:10.1007/978-3-319-25789-1_9
Galliano, S., Geoffrois, E., Mostefa, D., Choukri, K., Bonastre, J.-F., Gravier, G.: The ESTER phase II evaluation campaign for the rich transcription of French Broadcast News. In: INTERSPEECH 2005, pp. 1149–1152 (2005)
Galliano, S., Gravier, G., Chaubard, L.: The ESTER 2 evaluation campaign for the rich transcription of French radio broadcasts. In: INTERSPEECH, vol. 9, pp. 2583–2586 (2009)
Estève, Y., Bazillon, T., Antoine, J.-Y., Béchet, F., Farinas, J.: The EPAC corpus: manual and automatic annotations of conversational speech in French broadcast news. In: LREC. Citeseer (2010)
Gravier, G., Adda, G., Paulsson, N., Carr, M., Giraudel, A., Galibert, O.: The ETAPE corpus for the evaluation of speech-based TV content processing in the French language. In: Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC 2012) (2012)
Deléglise, P., Estève, Y., Meignier, S., Merlin, T.: Improvements to the LIUM French ASR system based on CMU Sphinx: what helps to significantly reduce the word error rate? In: INTERSPEECH, Brighton, UK, September 2009
Cardinal, P., Boulianne, G., Comeau, M., Boisvert, M.: Real-time correction of closed-captions. In: Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, pp. 113–116. Association for Computational Linguistics (2007)
Bonneau-Maynard, H., Quignard, M., Denis, A.: MEDIA: a semantically annotated corpus of task oriented dialogs in French. Lang. Resour. Eval. 43(4), 329 (2009)
Devillers, L., Maynard, H., Rosset, S., Paroubek, P., McTait, K., Mostefa, D., Choukri, K., Charnay, L., Bousquet, C., Vigouroux, N., et al.: The French MEDIA/EVALDA project: the evaluation of the understanding capability of spoken language dialogue systems. In: LREC. Citeseer (2004)
Rousseau, A., Boulianne, G., Deléglise, P., Estève, Y., Gupta, V., Meignier, S.: LIUM and CRIM ASR system combination for the REPERE evaluation campaign. In: Sojka, P., Horák, A., Kopeček, I., Pala, K. (eds.) TSD 2014. LNCS, vol. 8655, pp. 441–448. Springer, Cham (2014). doi:10.1007/978-3-319-10816-2_53
Raymond, C., Riccardi, G.: Generative and discriminative algorithms for spoken language understanding. In: INTERSPEECH, pp. 1605–1608 (2007)
Servan, C., Raymond, C., Béchet, F., Nocéra, P.: Conceptual decoding from word lattices: application to the spoken dialogue corpus media. In: The Ninth International Conference on Spoken Language Processing (INTERSPEECH 2006-ICSLP) (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ghannay, S., Estève, Y., Camelin, N. (2017). Enriching Confusion Networks for Post-processing. In: Camelin, N., Estève, Y., Martín-Vide, C. (eds) Statistical Language and Speech Processing. SLSP 2017. Lecture Notes in Computer Science(), vol 10583. Springer, Cham. https://doi.org/10.1007/978-3-319-68456-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-68456-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-68455-0
Online ISBN: 978-3-319-68456-7
eBook Packages: Computer ScienceComputer Science (R0)