Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantum Computer Simulation on GPU Cluster Incorporating Data Locality

  • Conference paper
  • First Online:
Cloud Computing and Security (ICCCS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10602))

Included in the following conference series:

  • 1873 Accesses

Abstract

Quantum computer simulation provides researchers with tools for verification of quantum algorithms. GPU (Graphics Processing Units) cluster is an advisable platform for this task. However, the high cost of communication between GPUs makes the simulation inefficiency. To overcome this drawback, we propose the following two methods. (1) A method for GPU cluster quantum simulation to improve the data locality is introduced, and two schemes for data exchanging are proposed. (2) A novel data distribution method for quantum computer simulation on GPU cluster is proposed. Experimental results show that the simulation of 33-qubit Quantum Fourier Transform algorithm using 4 nodes outperforms the serial program of the CPU cluster with a speedup of 129 times.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  2. De Raedt, K., et al.: Massively parallel quantum computer simulator. Comput. Phys. Commun. 176(2), 121–136 (2007)

    Article  MATH  Google Scholar 

  3. Lu, X., Yuan, J., Zhang, W.: Workflow of the Grover algorithm simulation incorporating CUDA and GPGPU. Comput. Phys. Commun. 184(9), 2035–2041 (2013)

    Article  MATH  Google Scholar 

  4. Gutirrez, E., Romero, S., Trenas, M.A., Zapata, E.L.: Quantum computer simulation using the CUDA programming model. Comput. Phys. Commun. 181(2), 283–300 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Amariutei, A., Caraiman, S.: Parallel quantum computer simulation on the GPU. In: International Conference on System Theory, Control, and Computing, pp. 1–6 (2011)

    Google Scholar 

  6. Smith, A., Khavari, K.: Quantum Computer Simulation Using CUDA. University of Toronto (2009). http://www.eecg.toronto.edu/*moshovos/CUDA08/arx/QFT_report.pdf

  7. Zhang, P., Yuan, J., Lu, X.: Quantum computer simulation on Multi-GPU incorporating data locality. In: Wang, G., Zomaya, A., Perez, G.M., Li, K. (eds.) ICA3PP 2015. LNCS, vol. 9528, pp. 241–256. Springer, Cham (2015). doi:10.1007/978-3-319-27119-4_17

    Chapter  Google Scholar 

  8. Xue, Y., Jiang, J., Zhao, B., Ma, T.: A self-adaptive artificial bee colony algorithm based on global best for global optimization. Soft. Comput. pp. 1–18 (2017)

    Google Scholar 

  9. Qu, Z., Keeney, J., Robitzsch, S., Zaman, F., Wang, X.: Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks. China. Commun. 13(7), 108–116 (2016)

    Article  Google Scholar 

  10. Fu, Z., Ren, K., Shu, J., Sun, X., Huang, F.: Enabling personalized search over encrypted outsourced data with efficiency improvement. IEEE. Trans. Parallel Distrb. 27(9), 2546–2559 (2016)

    Article  Google Scholar 

  11. Butscher, B., Weimer, H.: Libquantum library. http://www.libquantum.de

  12. Deutsch, D.: Quantum computational networks. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 425, pp. 73–90. The Royal Society (1989)

    Google Scholar 

  13. Kindratenko, V.V., Enos, J.J., Shi, G., Showerman, M.T.: GPU clusters for high-performance computing. In: IEEE International Conference on CLUSTER Computing and Workshops, pp. 1–8. IEEE Press (2009)

    Google Scholar 

  14. Message Passing Interface Forum. http://www.mpi-forum.org

  15. NVIDIA CUDA: programming guide, and SDK. http://www.nvidia.com/cuda

Download references

Acknowledgments

This work was supported by Funding of National Natural Science Foundation of China (Grant Nos. 61571226), Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20140823).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Z., Yuan, J. (2017). Quantum Computer Simulation on GPU Cluster Incorporating Data Locality. In: Sun, X., Chao, HC., You, X., Bertino, E. (eds) Cloud Computing and Security. ICCCS 2017. Lecture Notes in Computer Science(), vol 10602. Springer, Cham. https://doi.org/10.1007/978-3-319-68505-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68505-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68504-5

  • Online ISBN: 978-3-319-68505-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics