Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Variational Coupled Gaussian Process Dynamical Model

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2017 (ICANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10613))

Included in the following conference series:

Abstract

We present a full variational treatment of the Coupled Gaussian Process Dynamical Model (CGPDM) with non-marginalized coupling mappings. The CGPDM generates high-dimensional trajectories from coupled low-dimensional latent dynamical models. The deterministic variational treatment obviates the need for sampling and facilitates the use of the CGPDM on larger data sets. The non-marginalized coupling mappings allow for a flexible exchange of the constituent dynamics models at run time. This exchange possibility is crucial for the construction of modular movement primitive models. We test the model against the marginalized CGPDM, dynamic movement primitives and temporal movement primitives, finding that the CGPDM generally outperforms the other models. Human observers can hardly distinguish CGPDM-generated movements from real human movements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at http://uni-marburg.de/wk8Vf or from the authors.

References

  1. Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A., Bouchard, N., Bengio, Y.: Theano: new features and speed improvements. In: Deep Learning and Unsupervised Feature Learning NIPS Workshop (2012)

    Google Scholar 

  2. Bauer, M., van der Wilk, M., Rasmussen, C.: Understanding probabilistic sparse Gaussian process approximations. Technical report, arXiv:1606.04820 (2016)

  3. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)

    MATH  Google Scholar 

  4. Bizzi, E., Cheung, V., d’Avella, A., Saltiel, P., Tresch, M.: Combining modules for movement. Brain Res. Rev. 57(1), 125–133 (2008)

    Article  Google Scholar 

  5. Clever, D., Harant, M., Koch, K.H., Mombaur, K., Endres, D.M.: A novel approach for the generation of complex humanoid walking sequences based on a combination of optimal control and learning of movement primitives. Rob. Aut. Sys. 83, 287–298 (2016). doi:10.1016/j.robot.2016.06.001

    Article  Google Scholar 

  6. Frigola, R., Chen, Y., Rasmussen, C.: Variational Gaussian process state-space models. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K. (eds.) Advances in NIPS, vol. 27, pp. 3680–3688 (2014)

    Google Scholar 

  7. Giese, M.A., Mukovskiy, A., Park, A.-N., Omlor, L., Slotine, J.-J.E.: Real-time synthesis of body movements based on learned primitives. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds.) Statistical and Geometrical Approaches to Visual Motion Analysis. LNCS, vol. 5604, pp. 107–127. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03061-1_6

    Chapter  Google Scholar 

  8. Hinton, G.E.: Products of experts. In: Proceedings of ICANN 1999, vol. 1, pp. 1–6 (1999)

    Google Scholar 

  9. Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P., Schaal, S.: Dynamical movement primitives: learning attractor models for motor behaviors. Neu. Comp. 25(2), 328–373 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jones, E., Oliphant, T., Peterson, P., et al.: SciPy: Open source scientific tools for Python (2001). http://www.scipy.org/. Accessed 9 Oct 2015

  11. Mattos, C.L.C., Dai, Z., Damianou, A., Forth, J., Barreto, G.A., Lawrence, N.D.: Recurrent Gaussian processes. Technical report, arXiv:1511.06644 (2016)

  12. Paraschos, A., Daniel, C., Peters, J., Neumann, G.: Probabilistic movement primitives. In: Burges, C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Advances in NIPS, vol. 26, pp. 2616–2624 (2013)

    Google Scholar 

  13. Pastor, P., Kalakrishnan, M., Righetti, L., Schaal, S.: Towards associative skill memories. In: IEEE-RAS International Conference on Humanoid Robots, pp. 309–315 (2012)

    Google Scholar 

  14. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Sig. Proc. 26(1), 43–49 (1978)

    Article  MATH  Google Scholar 

  15. Taubert, N., Christensen, A., Endres, D., Giese, M.: Online simulation of emotional interactive behaviors with hierarchical Gaussian process dynamical models. In: Proceedings of the ACM SAP, pp. 25–32. ACM (2012)

    Google Scholar 

  16. Titsias, M.K., Lawrence, N.D.: Bayesian Gaussian process latent variable model. In: Proceedings of the 13th AISTATS, pp. 844–851 (2010)

    Google Scholar 

  17. Velychko, D., Endres, D., Taubert, N., Giese, M.A.: Coupling Gaussian process dynamical models with product-of-experts kernels. In: Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P., Magg, S., Palm, G., Villa, A.E.P. (eds.) ICANN 2014. LNCS, vol. 8681, pp. 603–610. Springer, Cham (2014). doi:10.1007/978-3-319-11179-7_76

    Google Scholar 

  18. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 283–298 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

DFG-IRTG 1901 ‘The Brain in Action’, DFG-SFB-TRR 135 project C06. We thank Olaf Haag for help with rendering the movies, and Björn Büdenbender for assistance with MoCap.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Endres .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Velychko, D., Knopp, B., Endres, D. (2017). The Variational Coupled Gaussian Process Dynamical Model. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10613. Springer, Cham. https://doi.org/10.1007/978-3-319-68600-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68600-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68599-1

  • Online ISBN: 978-3-319-68600-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics