Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Model-Aware Representation Learning for Categorical Data with Hierarchical Couplings

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2017 (ICANN 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10614))

Included in the following conference series:

  • 4355 Accesses

Abstract

Learning an appropriate representation for categorical data is a critical yet challenging task. Current research makes efforts to embed the categorical data into the vector or dis/similarity spaces, however, it either ignores the complex interactions within data or overlooks the relationship between the representation and its fed learning model. In this paper, we propose a model-aware representation learning framework for categorical data with hierarchical couplings, which simultaneously reveals the couplings from value to object and optimizes the fitness of the represented data for the follow-up learning model. An SVM-aware representation learning method has been instantiated for this framework. Extensive experiments on ten UCI categorical datasets with diverse characteristics demonstrate the representation via our proposed method can significantly improve the learning performance (up to 18.64% improved) compared with other three competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmad, A., Dey, L.: A method to compute distance between two categorical values of same attribute in unsupervised learning for categorical data set. Pattern Recogn. Lett. 28(1), 110–118 (2007)

    Article  Google Scholar 

  2. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  3. Breiman, L., Friedman, J.H., Olshen, R., Stone, C.J.: Classification and regression trees. Biometrics 40(3), 358 (1984)

    MATH  MathSciNet  Google Scholar 

  4. Cao, F., Liang, J., Li, D., Bai, L., Dang, C.: A dissimilarity measure for the k-modes clustering algorithm. Knowl.-Based Syst. 26, 120–127 (2012)

    Article  Google Scholar 

  5. Grąbczewski, K., Jankowski, N.: Transformations of symbolic data for continuous data oriented models. In: Kaynak, O., Alpaydin, E., Oja, E., Xu, L. (eds.) ICANN/ICONIP -2003. LNCS, vol. 2714, pp. 359–366. Springer, Heidelberg (2003). doi:10.1007/3-540-44989-2_43

    Chapter  Google Scholar 

  6. Ienco, D., Pensa, R.G., Meo, R.: From context to distance: learning dissimilarity for categorical data clustering. ACM Trans. Knowl. Discov. Data 6(1), 1–25 (2012)

    Article  Google Scholar 

  7. Jia, H., Cheung, Y.M., Liu, J.: A new distance metric for unsupervised learning of categorical data. IEEE Trans. Neural Netw. Learn. Syst. 27(5), 1065–1079 (2016)

    Article  MathSciNet  Google Scholar 

  8. Le, S.Q., Ho, T.B.: An association-based dissimilarity measure for categorical data. Pattern Recogn. Lett. 26(16), 2549–2557 (2005)

    Article  Google Scholar 

  9. Ng, M.K., Li, M.J., Huang, J.Z., He, Z.: On the impact of dissimilarity measure in k-modes clustering algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 29(3), 503–507 (2007)

    Article  Google Scholar 

  10. Peng, S., Hu, Q., Chen, Y., Dang, J.: Improved support vector machine algorithm for heterogeneous data. Pattern Recogn. 48(6), 2072–2083 (2015)

    Article  Google Scholar 

  11. Stanfill, C., Waltz, D.: Toward memory-based reasoning. Commun. ACM 29(12), 1213–1228 (1986)

    Article  Google Scholar 

  12. Vapnik, V.N.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)

    MATH  Google Scholar 

  13. Wang, C., Dong, X., Zhou, F., Cao, L., Chi, C.H.: Coupled attribute similarity learning on categorical data. IEEE Trans. Neural Netw. Learn. Syst. 26(4), 781 (2015)

    Article  MathSciNet  Google Scholar 

  14. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. J. Artif. Intell. Res. 6(1), 1–34 (1997)

    MATH  MathSciNet  Google Scholar 

  15. Xie, J., Szymanski, B.K., Zaki, M.J.: Learning dissimilarities for categorical symbols. In: JMLR: Workshop on Feature Selection in Data Mining, pp. 2228–2238. JMLR.org (2013)

  16. Zhang, K., Wang, Q., Chen, Z., Marsic, I., Kumar, V., Jiang, G., Zhang, J.: From categorical to numerical: multiple transitive distance learning and embedding. In: SIAM International Conference on Data Mining, pp. 46–54. SIAM (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianglong Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Song, J., Zhu, C., Zhao, W., Liu, W., Liu, Q. (2017). Model-Aware Representation Learning for Categorical Data with Hierarchical Couplings. In: Lintas, A., Rovetta, S., Verschure, P., Villa, A. (eds) Artificial Neural Networks and Machine Learning – ICANN 2017. ICANN 2017. Lecture Notes in Computer Science(), vol 10614. Springer, Cham. https://doi.org/10.1007/978-3-319-68612-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68612-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68611-0

  • Online ISBN: 978-3-319-68612-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics