Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modeling Telecommunication Networks with the Use of Reference Graphs

  • Conference paper
  • First Online:
Image Processing and Communications Challenges 9 (IP&C 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 681))

Included in the following conference series:

Abstract

In this paper, an algorithm for finding graphs with parameters of Reference Graphs was presented. During the Reference Graphs search, it was found that in most cases with a specific number of nodes and equal degrees of nodes, there is more than one graph with identical baseline parameters, the diameter and average path length, and the number of these graphs increases with the increase of the number of nodes and their degree. To clarify where these differences are occurring, it was decided to define the characteristics of the comparable structures that could affect the transmission properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Azura, R., Othman, M., Selamat, H., Hock, P.: Modified degree six chordal rings network topology. In: Prosiding Simposium Kebangsaan Sains Mathematik Ke-16, pp. 3–5 (2008)

    Google Scholar 

  2. Azura, R.N.F., Othman, M., Peng, Y., Selamat, M.H.: On properties of modified degree six chordal rings network. Malays. J. Math. Sci. 4(2), 147–157 (2010)

    Google Scholar 

  3. Bujnowski, S., Dubalski, B., Zabłudowski, A., Ledziński, D., Marciniak, T., Pedersen, J.M.: Comparison of modified 6 degree chordal rings. Image Process. Commun. Challenges 2(2010), 435–446 (2010)

    Article  Google Scholar 

  4. Bujnowski, S., Dubalski, B., Zabłudowski, A.: Analysis of chordal rings. Mathematical Techniques and Problems in Telecommunications. Centro International de Matematica, Tomar, pp. 257–279 (2003)

    Google Scholar 

  5. Bujnowski, S., Dubalski, B., Zabludowski, A.: Analysis of 4th degree chordal rings. In: Communications in Computing, pp. 318–324 (2004)

    Google Scholar 

  6. Bujnowski, S., Dubalski, B., Zabludowski, A.: The evaluation of transmission ability of 3rd degree chordal rings with the use of adjacent matrix. In: Proceedings of the Seventh Informs Telecommunication Conference (2004)

    Google Scholar 

  7. Bujnowski, S., Dubalski, B., Zabludowski, A., Ledzinski, D., Riaz, M.T., Pedersen, J.M.: Evaluation of modified degree 5 chordal rings for network topologies. In: 2010 Australasian Telecommunication Networks and Applications Conference (ATNAC), pp. 60–65. IEEE (2010)

    Google Scholar 

  8. Bujnowski, S., Dubalski, B., Zabłudowski, A., Pedersen, J., Riaz, T.: Analysis of degree 5 chordal rings for network topologies. Image Process. Commun. Challenges 3, 445–457 (2011)

    Article  Google Scholar 

  9. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer-Verlag, Heidelberg (2001)

    MATH  Google Scholar 

  10. Dubalski, B., Zabludowski, A., Bujnowski, S., Pedersen, J.M.: Comparison of modified chordal rings fourth degree to chordal rings sixth degree. In: 50th International Symposium on ELMAR 2008, vol. 2, pp. 597–600. IEEE (2008)

    Google Scholar 

  11. Farah, R., Othman, M.: In modified chordal rings degree six geometrical representation properties. In: Proceedings of Fundamental Science Congress, Kuala Lumpur, Malaysia (2010)

    Google Scholar 

  12. Farah, R., Othman, M., Selamat, H., Hock, P.: Analysis of modified degree six chordal rings and traditional chordal rings degree six interconnection network. In: International Conference on Electronic Design, ICED 2008, pp. 1–7. IEEE (2008)

    Google Scholar 

  13. Farah, R., Othman, M., Selamat, M., Rushdan, M.: In layers shortest path of modified chordal rings degree six networks. In: Proceedings of International Conference on Intelligent Network and Computing, Kuala Lumpur, Malaysia (2010)

    Google Scholar 

  14. Farah, R., Othman, O., Selamat, M.: Combinatorial properties of modified chordal rings degree four networks. J. Comput. Sci. 6(3), 279–284 (2010)

    Article  Google Scholar 

  15. Freire, M.M., Da Silva, H.J.: Performance comparison of wavelength routing optical networks with chordal ring and mesh-torus topologies. In: International Conference on Networking, pp. 358–367. Springer (2001)

    Google Scholar 

  16. Lee, H., et al.: Analysis of chordal ring network. IEEE Trans. Comput. 100(4), 291–295 (1981)

    MathSciNet  Google Scholar 

  17. Pedersen, J.M., Gutierrez, J.M., Marciniak, T., Dubalski, B., Zabludowski, A.: Describing n2r properties using ideal graphs. In: Second International Conference on Advances in Mesh Networks, MESH 2009, pp. 150–154. IEEE (2009)

    Google Scholar 

  18. Raja, R., Shah, M., Othman, M., Selamat, M.H.: An optimum free-table routing algorithms of modified and traditional chordal ring networks of degree four. J. Mater. Sci. Eng. 4(10), 78–89 (2010)

    Google Scholar 

  19. Ustaw, D.: Obwieszczenie marszałka sejmu rzeczypospolitej polskiej z dnia 10 stycznia 2014 r. w sprawie ogłoszenia jednolitego tekstu ustawy - prawo telekomunikacyjne. Dziennik Ustaw 243(000) (2014)

    Google Scholar 

  20. Zieliński, R.: Metody Monte Carlo. Wydawnictwa Naukowo-Techniczne (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SÅ‚awomir Bujnowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Bujnowski, S., Marciniak, T., Lutowski, Z., Marciniak, B., Bujnowski, D. (2018). Modeling Telecommunication Networks with the Use of Reference Graphs. In: ChoraÅ›, M., ChoraÅ›, R. (eds) Image Processing and Communications Challenges 9. IP&C 2017. Advances in Intelligent Systems and Computing, vol 681. Springer, Cham. https://doi.org/10.1007/978-3-319-68720-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-68720-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-68719-3

  • Online ISBN: 978-3-319-68720-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics