Abstract
The past years have seen a growing amount of research on question answering (QA) over Semantic Web data, shaping an interaction paradigm that allows end users to profit from the expressive power of Semantic Web standards while, at the same time, hiding their complexity behind an intuitive and easy-to-use interface. On the other hand, the growing amount of data has led to a heterogeneous data landscape where QA systems struggle to keep up with the volume, variety and veracity of the underlying knowledge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
https://github.com/AKSW/gerbil/wiki/Question-Answering and the results are formatted according to https://www.w3.org/TR/sparql11-results-json/.
- 5.
- 6.
- 7.
- 8.
- 9.
References
Ngomo, A.-C.N., García-Rojas, A., Fundulaki, I.: HOBBIT: holistic benchmarking of big linked data. ERCIM News 2016(105) (2016)
Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M.R., Weissenborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., Almirantis, Y., Pavlopoulos, J., Baskiotis, N., Gallinari, P., Artières, T., Ngonga, A., Heino, N., Gaussier, É., Barrio-Alvers, L., Schroeder, M., Androutsopoulos, I., Paliouras, G.: An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. BMC Bioinformatics 16, 138 (2015)
Usbeck, R., Michael, R., Unger, C., Hoffmann, M., Demmler, C., Huthmann, J., Ngomo, A.-C.N.: Benchmarking question answering systems. Technical report, Leipzig University (2016)
Voorhees, E.M., et al.: The trec-8 question answering track report. Trec 99, 77–82 (1999)
Zou, L., Huang, R., Wang, H., Yu, J.X., He, W., Zhao, D.: Natural language question answering over RDF: a graph data driven approach. In: Proceedings of the 2014 ACM SIGMOD international conference on Management of Data, pp. 313–324. ACM (2014)
Acknowledgments
This work was supported by the Eurostars projects DIESEL (E!9367) and QAMEL (E!9725) as well as the European Union’s H2020 research and innovation action HOBBIT under the Grant Agreement number 688227. We also want to thank Christina Unger and Sebastian Walter for supporting this challenge.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Usbeck, R., Ngomo, AC.N., Haarmann, B., Krithara, A., Röder, M., Napolitano, G. (2017). 7th Open Challenge on Question Answering over Linked Data (QALD-7). In: Dragoni, M., Solanki, M., Blomqvist, E. (eds) Semantic Web Challenges. SemWebEval 2017. Communications in Computer and Information Science, vol 769. Springer, Cham. https://doi.org/10.1007/978-3-319-69146-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-69146-6_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69145-9
Online ISBN: 978-3-319-69146-6
eBook Packages: Computer ScienceComputer Science (R0)