Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Validation of Machine Learning Classifiers Using Metamorphic Testing and Feature Selection Techniques

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10607))

Abstract

Testing involves examining the behavior of a system in order to discover potential faults. Given an input for a system, the challenge of distinguishing the correct behavior from potentially incorrect one, is called the “test oracle problem”. Metamorphic testing has shown great potential in overcoming the test oracle problem. In this work, we apply metamorphic testing to validate experimentally machine learning classification algorithms, namely Naïve Bayes (NB) and k-Nearest Neighbor (k-NN) individually and in combination (i.e., ensemble classifications methods), using real-world biomedical datasets. Furthermore, advanced feature selection techniques and synthetic minority over-sampling technique (SMOTE) are used in order to generate our test suite and meet the requirements of the specified metamorphic relations. While, this study reveal that NB and k-NN satisfy the specified metamorphic relations, it also concludes that it is not compulsory that the metamorphic relations that are necessary for NB and k-NN individually, are also necessary for their ensemble classifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Smote: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(1), 321–357 (2002)

    MATH  Google Scholar 

  2. Chen, T.Y., Cheung, S.C., Yiu, S.: Metamorphic testing: a new approach for generating next test cases. Technical Report HKUST-CS98-01, Department of Computer Science, Hong Kong University of Science and Technology (1998)

    Google Scholar 

  3. Davis, M.D., Weyuker, E.J.: Pseudo-oracles for non-testable programs. In: Proceedings of the ACM 1981 Conference, NY, USA, pp. 254–257 (1981). http://doi.acm.org/10.1145/800175.809889

  4. Hall, M.A.: Correlation-based feature selection for machine learning. Ph.D. thesis, The University of Waikato (1999)

    Google Scholar 

  5. He, H., Garcia, E., et al.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  6. Lichman, M.: UCI machine learning repository. http://archive.ics.uci.edu/ml (2013). Accessed May 2017

  7. Murphy, C., Kaiser, G.E., Hu, L., Wu, L.: Properties of machine learning applications for use in metamorphic testing. In: Proceedings of the Twentieth International Conference on Software Engineering & Knowledge Engineering (SEKE 2008), San Francisco, CA, USA, 1–3 July 2008, pp. 867–872 (2008)

    Google Scholar 

  8. Ramana, B.V., Babu, M.S.P., Venkateswarlu, N.: A critical study of selected classification algorithms for liver disease diagnosis. Int. J. Database Manag. Syst. 3(2), 101–114 (2011)

    Article  Google Scholar 

  9. Segura, S., Fraser, G., Sanchez, A.B., Ruiz-Cortés, A.: A survey on metamorphic testing. IEEE Trans. Softw. Eng. 42(9), 805–824 (2016)

    Article  Google Scholar 

  10. Sesmero, M.P., Ledezma, A.I., Sanchis, A.: Generating ensembles of heterogeneous classifiers using stacked generalization. Wiley Interdiscip. Rev.: Data Min. Knowl. Discov. 5(1), 21–34 (2015)

    Google Scholar 

  11. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2005)

    MATH  Google Scholar 

  12. Xie, X., Ho, J., Murphy, C., Kaiser, G., Xu, B., Chen, T.Y.: Application of metamorphic testing to supervised classifiers. In: 9th International Conference on Quality Software QSIC 2009, pp. 135–144. IEEE (2009)

    Google Scholar 

  13. Xie, X., Ho, J.W., Murphy, C., Kaiser, G., Xu, B., Chen, T.Y.: Testing and validating machine learning classifiers by metamorphic testing. J. Syst. Softw. 84(4), 544–558 (2011)

    Article  Google Scholar 

  14. Zhou, Z.Q., Huang, D., Tse, T., Yang, Z., Huang, H., Chen, T.: Metamorphic testing and its applications. In: Proceedings of the 8th International Symposium on Future Software Technology (ISFST 2004), pp. 346–351 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jameleddine Hassine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Al-Azani, S., Hassine, J. (2017). Validation of Machine Learning Classifiers Using Metamorphic Testing and Feature Selection Techniques. In: Phon-Amnuaisuk, S., Ang, SP., Lee, SY. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2017. Lecture Notes in Computer Science(), vol 10607. Springer, Cham. https://doi.org/10.1007/978-3-319-69456-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69456-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69455-9

  • Online ISBN: 978-3-319-69456-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics