Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Generalized Format-Preserving Encryption for Character Data

  • Conference paper
  • First Online:
Cloud Computing, Security, Privacy in New Computing Environments (CloudComp 2016, SPNCE 2016)

Abstract

We studied the problem on applying format-preserving encryption (FPE) to character data, specifically the uncertainty of the binary size of ciphertexts caused by variable-width encoding. In this paper, we suggested a extended rank-then-encipher approach for character data which connects character strings with numbers under mixed-radix numeral system. Based on this method, we proposed a generic character FPE scheme that deals with mixed-radix numerals, by introducing a customized “dynamic modulo addition” into unbalanced Feistel construction. Our work showed a new way of designing encryption methods for arbitrary message spaces which involves no tradeoff between efficacy and efficiency. Besides describing our design, security of our schemes are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45760-7_9

    Chapter  Google Scholar 

  2. Bellare, M., Ristenpart, T., Rogaway, P., Stegers, T.: Format-preserving encryption. In: Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 295–312. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-7_19

    Chapter  Google Scholar 

  3. Spies, T.: Feistel finite set encryption. NIST submission (2008)

    Google Scholar 

  4. Morris, B., Rogaway, P., Stegers, T.: How to encipher messages on a small domain: deterministic encryption and the Thorp shuffle. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 286–302. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_17

    Chapter  Google Scholar 

  5. Hoang, V.T., Morris, B., Rogaway, P.: An enciphering scheme based on a card shuffle. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 1–13. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_1

    Chapter  Google Scholar 

  6. Bellare, M., Rogaway, P., Spies, T.: The FFX mode of operation for format-preserving encryption. NIST submission (2010)

    Google Scholar 

  7. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17, 373–386 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li, M., Liu, Z.L., Li, J.W., Jia, C.F.: Format-preserving encryption for character data. J. Netw. 7, 1239–1244 (2012)

    Google Scholar 

  9. Fraenkel, A.S.: Systems of numeration. Am. Math. Mon. 92, 105–114 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Patarin, J.: Generic attacks on Feistel schemes. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 222–238. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_14

    Chapter  Google Scholar 

  11. Schneier, B., Kelsey, J.: Unbalanced Feistel networks and block cipher design. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6_49

    Chapter  Google Scholar 

  12. Patarin, J.: About Feistel schemes with six (or more) rounds. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 103–121. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-69710-1_8

    Chapter  Google Scholar 

  13. Rozenberg, B., Weiss, M.: Complex format-preserving encryption scheme. 14/296484 (2015)

    Google Scholar 

  14. Hoover, D.N.: Format-preserving encryption via rotating block encryption. US8948376 B2 (2015)

    Google Scholar 

  15. Spies, T., Pauker, M.J.: Format-preserving cryptographic systems. US8958562 B2 (2015)

    Google Scholar 

  16. Li, J., Liu, Z.L., Chen, X.F., Xhafa, F., Tan, X., Wong, D.S.: L-EncDB: a lightweight framework for privacy-preserving data queries in cloud computing. Knowl.-Based Syst. 79, 18–26 (2015)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported by National Natural Science Foundation of China (No. 61672300), National Natural Science Foundation of Tianjin (Nos. 16JCYBJC15500 and 14JCYBJC15300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheli Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y., Li, B., Liang, S., Ma, H., Liu, Z. (2018). Generalized Format-Preserving Encryption for Character Data. In: Wan, J., et al. Cloud Computing, Security, Privacy in New Computing Environments. CloudComp SPNCE 2016 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 197. Springer, Cham. https://doi.org/10.1007/978-3-319-69605-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69605-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69604-1

  • Online ISBN: 978-3-319-69605-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics