Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

DeepGait: A Learning Deep Convolutional Representation for Gait Recognition

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10568))

Included in the following conference series:

Abstract

Human gait, as a soft biometric, helps to recognize people by walking. To further improve the recognition performances, we propose a novel video sensor-based gait representation, DeepGait, using deep convolutional features. DeepGait is generated by using an pre-trained VGG-D net without any fine-tuning. When compared with other traditional hand-crafted gait representations (eg. GEI, FDF and GFI etc.) experimentally on OU-ISR large population (OULP) dataset and CASIA-B dataset, DeepGait has been shown that the performances of the proposed method is outstanding under different walking variations (view, clothing, carrying bags). The OULP dataset, which includes 4007 subjects, makes our result reliable in a statically way. Even in a very low dimension, our proposed gait representation still outperforms the commonly used 11264-dimensional GEI. For further comparison, all the gait representation vectors are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Murray, M.P., Drought, A.B., Kory, R.C.: Walking patterns of normal men. J. Bone Joint Surg. Am. 46(2), 335–360 (1964)

    Article  Google Scholar 

  2. Cutting, J.E., Kozlowski, L.T.: Recognizing friends by their walk: gait perception without familiarity cues. Bull. Psychon. Soc. 9(5), 353–356 (1977)

    Article  Google Scholar 

  3. Hossain, E., Chetty, G.: Multimodal feature learning for gait biometric based human identity recognition. In: Lee, M., Hirose, A., Hou, Z.G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8227, pp. 721–728. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  4. Alotaibi, M., Mahmood, A.: Improved gait recognition based on specialized deep convolutional neural networks. In: 2015 IEEE Applied Imagery Pattern Recognition Workshop, pp. 1–7. IEEE Press, New York (2015)

    Google Scholar 

  5. Wolf, T., Babaee, M., Rigoll, G.: Multi-view gait recognition using 3D convolutional neural networks. In: IEEE International Conference on Image Processing, pp. 4165–4169. IEEE Press, New York (2016)

    Google Scholar 

  6. Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Geinet: view-invariant gait recognition using a convolutional neural network. In: 2016 International Conference on Biometrics (ICB), pp. 1–8. IEEE Press, New York (2016)

    Google Scholar 

  7. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  8. Mansur, A., Makihara, Y., Muramatsu, D., Yagi, Y.: Cross-view gait recognition using view-dependent discriminative analysis. In: 2014 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–8. IEEE Press, New York (2014)

    Google Scholar 

  9. Sharma, A., Kumar, A., Daume, H., Jacobs, D.W.: Generalized multiview analysis: a discriminative latent space. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2160–2167. IEEE Press, New York (2012)

    Google Scholar 

  10. Muramatsu, D., Makihara, Y., Yagi, Y.: View transformation model incorporating quality measures for cross-view gait recognition. IEEE Trans. Cybern. 46(7), 1602–1615 (2016)

    Article  Google Scholar 

  11. Muramatsu, D., Makihara, Y., Yagi, Y.: Cross-view gait recognition by fusion of multiple transformation consistency measures. IET Biom. 4(2), 62–73 (2015)

    Article  Google Scholar 

  12. Ben, X., Zhang, P., Meng, W., Yan, R., Yang, M., Liu, W., Zhang, H.: On the distance metric learning between cross-domain gaits. Neurocomputing 208, 153–164 (2016)

    Article  Google Scholar 

  13. Li, C., Min, X., Sun, S., Lin, W., Tang, Z.: Deepgait: a learning deep convolutional representation for view-invariant gait recognition using joint Bayesian. Appl. Sci. 7(3), 210 (2017)

    Article  Google Scholar 

  14. Iwama, H., Okumura, M., Makihara, Y., Yagi, Y.: The OU-ISIR Gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans. Inf. Forensics Secur. 7(5), 1511–1521 (2012)

    Article  Google Scholar 

  15. Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: Gait recognition using a view transformation model in the frequency domain. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision - ECCV 2006. LNCS, vol. 3953, pp. 151–163. Springer, Berlin, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint (2014). arXiv:1409.1556

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, New York (2012)

    Google Scholar 

  18. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM, New York (2014)

    Google Scholar 

  19. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. IEEE Press, New York (2014)

    Google Scholar 

  20. Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: a deep convolutional activation feature for generic visual recognition. In: Proceedings of the 31st International Conference on Machine Learning, pp. 647–655. ACM, New York (2014)

    Google Scholar 

  21. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4489–4497. IEEE Press, New York (2015)

    Google Scholar 

  22. Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)

    Google Scholar 

  23. Lam, T.H., Cheung, K.H., Liu, J.N.: Gait flow image: a silhouette-based gait representation for human identification. Pattern Recogn. 44(4), 973–987 (2011)

    Article  MATH  Google Scholar 

  24. Man, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)

    Article  Google Scholar 

  25. Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recogn. Lett. 31(13), 2052–2060 (2010)

    Article  Google Scholar 

  26. Bashir, K., Xiang, T., Gong, S.: Gait recognition using gait entropy image. In: 3rd International Conference on Crime Detection and Prevention (ICDP 2009), pp. 1–6. IET, Stevenage Herts (2009)

    Google Scholar 

  27. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 4, pp. 441–444. IEEE Press, New York (2006)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank OU-ISIR and CBSR for providing access to the OU-ISIR Large Population Gait Database and CASIA-B Gait Database. This study is partly supported by the National Natural Science Foundation of China (No. 61562072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Zhang, X., Sun, S., Li, C., Zhao, X., Hu, Y. (2017). DeepGait: A Learning Deep Convolutional Representation for Gait Recognition. In: Zhou, J., et al. Biometric Recognition. CCBR 2017. Lecture Notes in Computer Science(), vol 10568. Springer, Cham. https://doi.org/10.1007/978-3-319-69923-3_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69923-3_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69922-6

  • Online ISBN: 978-3-319-69923-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics