Abstract
Human gait, as a soft biometric, helps to recognize people by walking. To further improve the recognition performances, we propose a novel video sensor-based gait representation, DeepGait, using deep convolutional features. DeepGait is generated by using an pre-trained VGG-D net without any fine-tuning. When compared with other traditional hand-crafted gait representations (eg. GEI, FDF and GFI etc.) experimentally on OU-ISR large population (OULP) dataset and CASIA-B dataset, DeepGait has been shown that the performances of the proposed method is outstanding under different walking variations (view, clothing, carrying bags). The OULP dataset, which includes 4007 subjects, makes our result reliable in a statically way. Even in a very low dimension, our proposed gait representation still outperforms the commonly used 11264-dimensional GEI. For further comparison, all the gait representation vectors are available.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Murray, M.P., Drought, A.B., Kory, R.C.: Walking patterns of normal men. J. Bone Joint Surg. Am. 46(2), 335–360 (1964)
Cutting, J.E., Kozlowski, L.T.: Recognizing friends by their walk: gait perception without familiarity cues. Bull. Psychon. Soc. 9(5), 353–356 (1977)
Hossain, E., Chetty, G.: Multimodal feature learning for gait biometric based human identity recognition. In: Lee, M., Hirose, A., Hou, Z.G., Kil, R.M. (eds.) ICONIP 2013. LNCS, vol. 8227, pp. 721–728. Springer, Berlin, Heidelberg (2013)
Alotaibi, M., Mahmood, A.: Improved gait recognition based on specialized deep convolutional neural networks. In: 2015 IEEE Applied Imagery Pattern Recognition Workshop, pp. 1–7. IEEE Press, New York (2015)
Wolf, T., Babaee, M., Rigoll, G.: Multi-view gait recognition using 3D convolutional neural networks. In: IEEE International Conference on Image Processing, pp. 4165–4169. IEEE Press, New York (2016)
Shiraga, K., Makihara, Y., Muramatsu, D., Echigo, T., Yagi, Y.: Geinet: view-invariant gait recognition using a convolutional neural network. In: 2016 International Conference on Biometrics (ICB), pp. 1–8. IEEE Press, New York (2016)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)
Mansur, A., Makihara, Y., Muramatsu, D., Yagi, Y.: Cross-view gait recognition using view-dependent discriminative analysis. In: 2014 IEEE International Joint Conference on Biometrics (IJCB), pp. 1–8. IEEE Press, New York (2014)
Sharma, A., Kumar, A., Daume, H., Jacobs, D.W.: Generalized multiview analysis: a discriminative latent space. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2160–2167. IEEE Press, New York (2012)
Muramatsu, D., Makihara, Y., Yagi, Y.: View transformation model incorporating quality measures for cross-view gait recognition. IEEE Trans. Cybern. 46(7), 1602–1615 (2016)
Muramatsu, D., Makihara, Y., Yagi, Y.: Cross-view gait recognition by fusion of multiple transformation consistency measures. IET Biom. 4(2), 62–73 (2015)
Ben, X., Zhang, P., Meng, W., Yan, R., Yang, M., Liu, W., Zhang, H.: On the distance metric learning between cross-domain gaits. Neurocomputing 208, 153–164 (2016)
Li, C., Min, X., Sun, S., Lin, W., Tang, Z.: Deepgait: a learning deep convolutional representation for view-invariant gait recognition using joint Bayesian. Appl. Sci. 7(3), 210 (2017)
Iwama, H., Okumura, M., Makihara, Y., Yagi, Y.: The OU-ISIR Gait database comprising the large population dataset and performance evaluation of gait recognition. IEEE Trans. Inf. Forensics Secur. 7(5), 1511–1521 (2012)
Makihara, Y., Sagawa, R., Mukaigawa, Y., Echigo, T., Yagi, Y.: Gait recognition using a view transformation model in the frequency domain. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Computer Vision - ECCV 2006. LNCS, vol. 3953, pp. 151–163. Springer, Berlin, Heidelberg (2006)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint (2014). arXiv:1409.1556
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, New York (2012)
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 675–678. ACM, New York (2014)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587. IEEE Press, New York (2014)
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., Darrell, T.: Decaf: a deep convolutional activation feature for generic visual recognition. In: Proceedings of the 31st International Conference on Machine Learning, pp. 647–655. ACM, New York (2014)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4489–4497. IEEE Press, New York (2015)
Zhou, B., Lapedriza, A., Xiao, J., Torralba, A., Oliva, A.: Learning deep features for scene recognition using places database. In: Advances in Neural Information Processing Systems, pp. 487–495 (2014)
Lam, T.H., Cheung, K.H., Liu, J.N.: Gait flow image: a silhouette-based gait representation for human identification. Pattern Recogn. 44(4), 973–987 (2011)
Man, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intell. 28(2), 316–322 (2006)
Bashir, K., Xiang, T., Gong, S.: Gait recognition without subject cooperation. Pattern Recogn. Lett. 31(13), 2052–2060 (2010)
Bashir, K., Xiang, T., Gong, S.: Gait recognition using gait entropy image. In: 3rd International Conference on Crime Detection and Prevention (ICDP 2009), pp. 1–6. IET, Stevenage Herts (2009)
Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: 18th International Conference on Pattern Recognition (ICPR 2006), vol. 4, pp. 441–444. IEEE Press, New York (2006)
Acknowledgments
The authors would like to thank OU-ISIR and CBSR for providing access to the OU-ISIR Large Population Gait Database and CASIA-B Gait Database. This study is partly supported by the National Natural Science Foundation of China (No. 61562072).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Zhang, X., Sun, S., Li, C., Zhao, X., Hu, Y. (2017). DeepGait: A Learning Deep Convolutional Representation for Gait Recognition. In: Zhou, J., et al. Biometric Recognition. CCBR 2017. Lecture Notes in Computer Science(), vol 10568. Springer, Cham. https://doi.org/10.1007/978-3-319-69923-3_48
Download citation
DOI: https://doi.org/10.1007/978-3-319-69923-3_48
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69922-6
Online ISBN: 978-3-319-69923-3
eBook Packages: Computer ScienceComputer Science (R0)