Abstract
As inertial sensors are low-cost, easy-to-use, and can be integrated in wearable devices, they can be used to establish as a new modality for user authentication in the smart environment in which computing systems can recognize persons implicitly by their walking patterns. This motivates our proposal to use multi-region size Convolutional Neural Network to recognize users from their gait patterns recorded from accelerometers and gyroscopes in mobile and wearable devices.
Experiments on Inertial Sensor Dataset of OU-ISIR Gait Database, the largest inertial sensor-based gait database, demonstrate that our best CNN models provide the accuracy of \(96.84\%\) and EER of \(10.43\%\), better than those of existing methods. Furthermore, we also prove by experiments that by using only a subset of subjects in OU-ISIR dataset to train CNN models, our method can achieve the accuracy and EER approximately \((95.53 \pm 0.82)\%\) and \((11.60 \pm 0.98)\%\), respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bianchi, A., Oakley, I.: Wearable authentication: trends and opportunities. Inform. Technol. 58(5), 255–262 (2016)
Choi, S., Youn, I., LeMay, R., Burns, S., Youn, J.: Biometric gait recognition based on wireless acceleration sensor using k-nearest neighbor classification. In: International Conference on Computing, Networking and Communications, ICNC 2014, Honolulu, HI, USA, 3–6 February 2014, pp. 1091–1095 (2014)
Clark, R.A., Pua, Y.H., Bryant, A.L., Hunt, M.A.: Validity of the microsoft kinect for providing lateral trunk lean feedback during gait retraining. Gait Posture 38(4), 1064–1066 (2013)
Derawi, M.O., Bours, P.: Gait and activity recognition using commercial phones. Comput. Secur. 39, 137–144 (2013)
Derawi, M.O., Bours, P., Holien, K.: Improved cycle detection for accelerometer based gait authentication. In: Echizen, I., Pan, J.S., Fellner, D.W., Nouak, A., Kuijper, A., Jain, L.C. (eds.) IIH-MSP, pp. 312–317. IEEE Computer Society (2010)
Di Stasi, S.L., Logerstedt, D., Gardinier, E.S., Snyder-Mackler, L.: Gait patterns differ between acl-reconstructed athletes who pass return-to-sport criteria and those who fail. Am. J. Sports Med. 41(6), 1310–1318 (2013)
Gadaleta, M., Rossi, M.: Idnet: smartphone-based gait recognition with convolutional neural networks. CoRR abs/1606.03238 (2016)
Gafurov, D., Snekkenes, E., Bours, P.: Improved gait recognition performance using cycle matching. In: 24th IEEE International Conference on Advanced Information Networking and Applications Workshops, WAINA 2010, Perth, Australia, 20–13 April 2010, pp. 836–841 (2010)
Hannink, J., Kautz, T., Pasluosta, C., Gassmann, K.G., Klucken, J., Eskofier, B.: Sensor-based gait parameter extraction with deep convolutional neural networks. IEEE J. Biomed. Health Inform. (2016)
Jensen, R.R., Paulsen, R.R., Larsen, R.: Analyzing gait using a time-of-flight camera. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 21–30. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02230-2_3
Kirtley, C.: Clinical gait analysis: theory and practice. Elsevier Health Sciences (2006)
Lane, N.D., Georgiev, P.: Can deep learning revolutionize mobile sensing? In: Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, pp. 117–122. ACM (2015)
Le, C., Jain, R.: A survey of biometrics security systems. EEUU. Washington University in St, Louis (2009)
Lee, J., Kim, D., Ryoo, H.Y., Shin, B.S.: Sustainable wearables: wearable technology for enhancing the quality of human life. Sustainability 8(5), 466 (2016)
Lee, L., Grimson, W.E.L.: Gait analysis for recognition and classification. In: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 155–162. IEEE (2002)
Lu, H., Huang, J., Saha, T., Nachman, L.: Unobtrusive gait verification for mobile phones. In: Dunne, L.E., Martin, T., Beigl, M. (eds.) ISWC, pp. 91–98. ACM (2014)
Luo, J., Tang, J., Tjahjadi, T., Xiao, X.: Robust arbitrary view gait recognition based on parametric 3d human body reconstruction and virtual posture synthesis. Pattern Recogn. 60, 361–377 (2016)
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML, vol. 30 (2013)
Mantyjarvi, J., Lindholm, M., Vildjiounaite, E., Makela, S., Ailisto, H.: Identifying users of portable devices from gait pattern with accelerometers. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP 2005), vol. 2, p. ii-973 (2005)
Phan Ba, R., Pierard, S., Moonen, G., van Droogenbroeck, M., Belachew, S.: Detection and quantification of efficiency and quality of gait impairment in multiple sclerosis through foot path analysis. Multiple Sclerosis J. 18, 110 (2012)
Ren, Y., Chen, Y., Chuah, M.C., Yang, J.: User verification leveraging gait recognition for smartphone enabled mobile healthcare systems. IEEE Trans. Mob. Comput. 14(9), 1961–1974 (2015)
Rong, L., Jianzhong, Z., Ming, L., Xiangfeng, H.: A wearable acceleration sensor system for gait recognition. In: 2007 2nd IEEE Conference on Industrial Electronics and Applications, pp. 2654–2659, May 2007
Sprager, S., Juric, M.B.: Inertial sensor-based gait recognition: a review. Sensors 15(9), 22089–22127 (2015)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015
Tang, Y.: Deep learning using linear support vector machines. arXiv preprint arXiv:1306.0239 (2013)
Terada, S., Enomoto, Y., Hanawa, D., Oguchi, K.: Performance of gait authentication using an acceleration sensor. In: 2011 34th International Conference on Telecommunications and Signal Processing (TSP), pp. 34–36. IEEE (2011)
Thanh, T.N., Makihara, Y., Nagahara, H., Mukaigawa, Y., Yagi, Y.: The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recogn. 47(1), 228–237 (2014)
Watanabe, Y.: Influence of holding smart phone for acceleration-based gait authentication. In: EST, pp. 30–33. IEEE Computer Society (2014)
Xue, Z., Ming, D., Song, W., Wan, B., Jin, S.: Infrared gait recognition based on wavelet transform and support vector machine. Pattern Recogn. 43(8), 2904–2910 (2010)
Zhang, Y., Pan, G., Jia, K., Lu, M., Wang, Y., Wu, Z.: Accelerometer-based gait recognition by sparse representation of signature points with clusters. IEEE Trans. Cybern. 45(9), 1864–1875 (2015)
Acknowledgement
This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number B2015-18-01.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Nguyen, KT., Vo-Tran, TL., Dinh, DT., Tran, MT. (2017). Gait Recognition with Multi-region Size Convolutional Neural Network for Authentication with Wearable Sensors. In: Dang, T., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds) Future Data and Security Engineering. FDSE 2017. Lecture Notes in Computer Science(), vol 10646. Springer, Cham. https://doi.org/10.1007/978-3-319-70004-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-70004-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70003-8
Online ISBN: 978-3-319-70004-5
eBook Packages: Computer ScienceComputer Science (R0)