Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Gait Recognition with Multi-region Size Convolutional Neural Network for Authentication with Wearable Sensors

  • Conference paper
  • First Online:
Future Data and Security Engineering (FDSE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10646))

Included in the following conference series:

Abstract

As inertial sensors are low-cost, easy-to-use, and can be integrated in wearable devices, they can be used to establish as a new modality for user authentication in the smart environment in which computing systems can recognize persons implicitly by their walking patterns. This motivates our proposal to use multi-region size Convolutional Neural Network to recognize users from their gait patterns recorded from accelerometers and gyroscopes in mobile and wearable devices.

Experiments on Inertial Sensor Dataset of OU-ISIR Gait Database, the largest inertial sensor-based gait database, demonstrate that our best CNN models provide the accuracy of \(96.84\%\) and EER of \(10.43\%\), better than those of existing methods. Furthermore, we also prove by experiments that by using only a subset of subjects in OU-ISIR dataset to train CNN models, our method can achieve the accuracy and EER approximately \((95.53 \pm 0.82)\%\) and \((11.60 \pm 0.98)\%\), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bianchi, A., Oakley, I.: Wearable authentication: trends and opportunities. Inform. Technol. 58(5), 255–262 (2016)

    Google Scholar 

  2. Choi, S., Youn, I., LeMay, R., Burns, S., Youn, J.: Biometric gait recognition based on wireless acceleration sensor using k-nearest neighbor classification. In: International Conference on Computing, Networking and Communications, ICNC 2014, Honolulu, HI, USA, 3–6 February 2014, pp. 1091–1095 (2014)

    Google Scholar 

  3. Clark, R.A., Pua, Y.H., Bryant, A.L., Hunt, M.A.: Validity of the microsoft kinect for providing lateral trunk lean feedback during gait retraining. Gait Posture 38(4), 1064–1066 (2013)

    Article  Google Scholar 

  4. Derawi, M.O., Bours, P.: Gait and activity recognition using commercial phones. Comput. Secur. 39, 137–144 (2013)

    Article  Google Scholar 

  5. Derawi, M.O., Bours, P., Holien, K.: Improved cycle detection for accelerometer based gait authentication. In: Echizen, I., Pan, J.S., Fellner, D.W., Nouak, A., Kuijper, A., Jain, L.C. (eds.) IIH-MSP, pp. 312–317. IEEE Computer Society (2010)

    Google Scholar 

  6. Di Stasi, S.L., Logerstedt, D., Gardinier, E.S., Snyder-Mackler, L.: Gait patterns differ between acl-reconstructed athletes who pass return-to-sport criteria and those who fail. Am. J. Sports Med. 41(6), 1310–1318 (2013)

    Article  Google Scholar 

  7. Gadaleta, M., Rossi, M.: Idnet: smartphone-based gait recognition with convolutional neural networks. CoRR abs/1606.03238 (2016)

    Google Scholar 

  8. Gafurov, D., Snekkenes, E., Bours, P.: Improved gait recognition performance using cycle matching. In: 24th IEEE International Conference on Advanced Information Networking and Applications Workshops, WAINA 2010, Perth, Australia, 20–13 April 2010, pp. 836–841 (2010)

    Google Scholar 

  9. Hannink, J., Kautz, T., Pasluosta, C., Gassmann, K.G., Klucken, J., Eskofier, B.: Sensor-based gait parameter extraction with deep convolutional neural networks. IEEE J. Biomed. Health Inform. (2016)

    Google Scholar 

  10. Jensen, R.R., Paulsen, R.R., Larsen, R.: Analyzing gait using a time-of-flight camera. In: Salberg, A.-B., Hardeberg, J.Y., Jenssen, R. (eds.) SCIA 2009. LNCS, vol. 5575, pp. 21–30. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02230-2_3

    Chapter  Google Scholar 

  11. Kirtley, C.: Clinical gait analysis: theory and practice. Elsevier Health Sciences (2006)

    Google Scholar 

  12. Lane, N.D., Georgiev, P.: Can deep learning revolutionize mobile sensing? In: Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications, pp. 117–122. ACM (2015)

    Google Scholar 

  13. Le, C., Jain, R.: A survey of biometrics security systems. EEUU. Washington University in St, Louis (2009)

    Google Scholar 

  14. Lee, J., Kim, D., Ryoo, H.Y., Shin, B.S.: Sustainable wearables: wearable technology for enhancing the quality of human life. Sustainability 8(5), 466 (2016)

    Article  Google Scholar 

  15. Lee, L., Grimson, W.E.L.: Gait analysis for recognition and classification. In: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 155–162. IEEE (2002)

    Google Scholar 

  16. Lu, H., Huang, J., Saha, T., Nachman, L.: Unobtrusive gait verification for mobile phones. In: Dunne, L.E., Martin, T., Beigl, M. (eds.) ISWC, pp. 91–98. ACM (2014)

    Google Scholar 

  17. Luo, J., Tang, J., Tjahjadi, T., Xiao, X.: Robust arbitrary view gait recognition based on parametric 3d human body reconstruction and virtual posture synthesis. Pattern Recogn. 60, 361–377 (2016)

    Article  Google Scholar 

  18. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML, vol. 30 (2013)

    Google Scholar 

  19. Mantyjarvi, J., Lindholm, M., Vildjiounaite, E., Makela, S., Ailisto, H.: Identifying users of portable devices from gait pattern with accelerometers. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP 2005), vol. 2, p. ii-973 (2005)

    Google Scholar 

  20. Phan Ba, R., Pierard, S., Moonen, G., van Droogenbroeck, M., Belachew, S.: Detection and quantification of efficiency and quality of gait impairment in multiple sclerosis through foot path analysis. Multiple Sclerosis J. 18, 110 (2012)

    Google Scholar 

  21. Ren, Y., Chen, Y., Chuah, M.C., Yang, J.: User verification leveraging gait recognition for smartphone enabled mobile healthcare systems. IEEE Trans. Mob. Comput. 14(9), 1961–1974 (2015)

    Article  Google Scholar 

  22. Rong, L., Jianzhong, Z., Ming, L., Xiangfeng, H.: A wearable acceleration sensor system for gait recognition. In: 2007 2nd IEEE Conference on Industrial Electronics and Applications, pp. 2654–2659, May 2007

    Google Scholar 

  23. Sprager, S., Juric, M.B.: Inertial sensor-based gait recognition: a review. Sensors 15(9), 22089–22127 (2015)

    Article  Google Scholar 

  24. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, June 2015

    Google Scholar 

  25. Tang, Y.: Deep learning using linear support vector machines. arXiv preprint arXiv:1306.0239 (2013)

  26. Terada, S., Enomoto, Y., Hanawa, D., Oguchi, K.: Performance of gait authentication using an acceleration sensor. In: 2011 34th International Conference on Telecommunications and Signal Processing (TSP), pp. 34–36. IEEE (2011)

    Google Scholar 

  27. Thanh, T.N., Makihara, Y., Nagahara, H., Mukaigawa, Y., Yagi, Y.: The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication. Pattern Recogn. 47(1), 228–237 (2014)

    Article  Google Scholar 

  28. Watanabe, Y.: Influence of holding smart phone for acceleration-based gait authentication. In: EST, pp. 30–33. IEEE Computer Society (2014)

    Google Scholar 

  29. Xue, Z., Ming, D., Song, W., Wan, B., Jin, S.: Infrared gait recognition based on wavelet transform and support vector machine. Pattern Recogn. 43(8), 2904–2910 (2010)

    Article  MATH  Google Scholar 

  30. Zhang, Y., Pan, G., Jia, K., Lu, M., Wang, Y., Wu, Z.: Accelerometer-based gait recognition by sparse representation of signature points with clusters. IEEE Trans. Cybern. 45(9), 1864–1875 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number B2015-18-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khac-Tuan Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, KT., Vo-Tran, TL., Dinh, DT., Tran, MT. (2017). Gait Recognition with Multi-region Size Convolutional Neural Network for Authentication with Wearable Sensors. In: Dang, T., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds) Future Data and Security Engineering. FDSE 2017. Lecture Notes in Computer Science(), vol 10646. Springer, Cham. https://doi.org/10.1007/978-3-319-70004-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70004-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70003-8

  • Online ISBN: 978-3-319-70004-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics