Abstract
Traditional dance in Malaysia is generating considerable amount of interest due to its unique elements of heritage which have contributed to its diverse music and dance forms. For example, Zapin, Kuda Kepang, Mak Yong, Joget, Ngajat and much more. Recent developments in technology and ever- growing online community, traditional dance are undergoing a revolution where these dance form can be studied and observed easily especially when there are dance software that can help guide users to learn by performing the dance steps in real-time. However, the use of gesture sensor for accurately mapping the dance movements of traditional dance is not yet explored, since only modern dances are normally available to the masses in the form of computer games. This paper outlines a new approach to implement Normalize Dynamic Time Warping (NDTW) algorithm using skeleton tracking techniques to imitate the intricate movements of traditional dance and to assess the robustness of the algorithm. For this study, the traditional dance of Zapin was chosen because it consists of simple body movements and data were acquired using Microsoft Kinect. The results showed that the proposed algorithm gave the overall matching rate of 99.21% with maximum mean success rate of dancers gave 99.68% and non-dancers gave the percentage of 98.76%. This technique may be considered as a relatively unexplored application area, and the proposed system is an attempt to address the problem with reasonable accuracy and scopes for further research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexiadis, D.S., Kelly, P., Daras, P., O’Connor, N.E., Boubekeur, T., Moussa, M.B.: Evaluating a dancer’s performance using kinect-based skeleton tracking. In: ACM International Conference on Multimedia, pp. 659–662. ACM, New York (2011)
Brodd-Reijer, C.: Dance quantification with kinect: adjusting music volume by using depth data from a kinect sensor (2012)
Carmona, J.M., Climent, J.: A performance evaluation of HMM and DTW for gesture recognition. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 236–243. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33275-3_29
Correa, D.S., Sciotti, D.F., Prado, M.G.: Mobile robots navigation in indoor environments using kinect sensor. In: Second Brazilian Conference on Critical Embedded Systems (CBSEC), Brazil, pp. 36–41 (2012)
Csaba, G., Somlyai, L., Vámossy, Z.: Differences between kinect and structured lighting sensor in robot navigation. In: 2012 IEEE 10th International Symposium Applied Machine Intelligence and Informatics (SAMI), Herl’any, Slovakia, pp. 85–90. IEEE (2012)
Essid, S., Alexiadis, D., Tournemenne, R., Gowing, M., Kelly, P., Monaghan, D., Daras, P., Drémeau, A., O’Connor, N.E.: An advanced virtual dance performance evaluator. In: 2012 IEEE International Conference Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan. IEEE (2012)
Gowing, M., Kell, P., O’Connor, N.E., Concolato, C., Essid, S., Lefeuvre, J., Zhang, Q.: Enhanced visualisation of dance performance from automatically synchronised multimodal recordings. In: MM International Multimedia Conference, pp. 667–670. ACM, New York (2011)
Hani, B.-S., Clinton, J.: Evaluating the effect of 3D world integration within a social software environment. In: 2015 12th International Conference Information Technology - New Generations (ITNG), Las Vegas, NV, USA, pp. 255–260. IEEE (2015)
Higinio, G., Riveiro, B., Esteban, V.-F., Martinez-Sanchez, J., Pedro, A.: Metrological evaluation of microsoft kinect and asus xtion sensors, 1800–1806 (2013)
Hu, M.-C., Chen, C.-W., Cheng, W.-H., Chang, C.-H., Lai, J.-H., Wu, J.-L.: Real-time human movement retrieval and assessment with kinect sensor. IEEE Trans. Cybern. 742–753 (2014)
Huang, C.-H., Boyer, E., Ilic, S.: Robust human body shape and pose tracking. In: International Conference on 3D Vision, Washington, DC, USA, pp. 287–294. IEEE (2013)
Jia, W., Won-Jae, Y., Jafar, S., Erdal, O.: 3D image reconstruction and human body tracking using stereo vision and kinect technology. In: 2012 IEEE International Conference Electro/Information Technology (EIT), Indianapolis, IN, USA. IEEE (2012)
Jo, H., Yu, H., Kim, K., Sung, J.H.: Motion tracking system for multi-user with multiple kinects. Int. J. u-and e-Serv. Sci. Technol. 99–108 (2015)
Kar, R., Konar, A., Chakraborty, A.: Dance composition using microsoft kinect. In: Gavrilova, M.L., Tan, C.J.K., Saeed, K., Chaki, N., Shaikh, S.H. (eds.) Transactions on Computational Science XXV. LNCS, vol. 9030, pp. 20–34. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47074-9_2
Adistambha, K., Ritz, C.H., Burnett, I.S.: Motion classification using dynamic time warping. In: 2008 IEEE 10th Workshop on Multimedia Signal Processing, Australia. IEEE (2008)
Kitsikidis, A., Dimitropoulos, K., Douka, S., Grammalidis, N.: Dance analysis using multiple Kinect sensors. In: Computer Vision Theory and Applications (VISAPP), pp. 789–795. IEEE (2014)
Kyan, M., Sun, G., Li, H., Zhong, L., Muneesawang, P., Dong, N., Guan, L.: An approach to ballet dance training through MS kinect and visualization in a cave virtual reality environment. ACM Trans. Intell. Syst. Technol. (TIST) 6, 23 (2015). Special Section on Visual Understanding with RGB-D Sensors. ACM, New York, NY, USA
Marija, M., Mile, J., Darko, M.: Analysis of the problem of Macedonian folk dance recognition. In: Conference for Informatics and Information Technology (2013)
Martin, C.C., Burkert, D.C., Choi, K.R.: A real-time ergonomic monitoring system using the microsoft kinect. In: Systems and Information Symposium (SIEDS), pp. 50–55. IEEE (2012)
Mohamed, A., Surip, S.: Real-time interactive cultural dance with gesture gaming elements via kinect-based skeleton tracking. In: 6th International Conference on Local Knowledge (ICLK), pp. 385–391 (2016)
Moran, A., Kamhi, G., Popov, A., Groscot, R.: Introducing Intel® RealSense™. Robotics Innovation Program (2015). http://roscon.ros.org/2015
Nazeeh, A., Khan, A., Alnowaimi, M., Morfeq, A.H., Ehab, A.H.: Accuracy of joint angles tracking using markerless motion system (2014)
Papadopoulos, G.T., Axenopoulos, A., Daras, P.: Real-time skeleton-tracking-based human action recognition using kinect data. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds.) MMM 2014. LNCS, vol. 8325, pp. 473–483. Springer, Cham (2014). doi:10.1007/978-3-319-04114-8_40
Park, H., Lee, J., Bae, J.: Development of a dance rehabilitation system using kinect and a vibration feedback glove. In: 2015 15th International Conference Control, Automation and Systems (ICCAS), Busan, South Korea. IEEE (2015)
Pohl, H., Hadjakos, A.: Dance pattern recognition using dynamic time warping. In: Sound and Music Computing (2010)
Raptis, M., Kirovski, D., Hoppe, H.: Real-time classification of dance gestures from skeleton animation. In: Symposium on Computer Animation, pp. 147–156. ACM, New York (2011)
Schulz, S., Woerner, A.: Automatic motion segmentation for human motion synthesis. In: Perales, F.J., Fisher, R.B. (eds.) AMDO 2010. LNCS, vol. 6169, pp. 182–191. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14061-7_18
Sungphill, M., Youngbin, P., Wook, K.D., Hong, S.I.: Multiple kinect sensor fusion for human. Int. J. Adv. Robot. Syst. (2015)
Tang, J.K., Chan, J.C., Leung, H.: Interactive dancing game with real-time recognition of continuous dance moves from 3D human motion capture. In: International Conference on Ubiquitous Information Management and Communication, p. 50. ACM, New York (2011)
Vantigodi, S., Radhakrishnan, V.B.: Action recognition from motion capture data using meta-cognitive RBF network classifier. In: 2014 IEEE Ninth International Conference Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), Singapore, pp. 1–6. IEEE (2014)
Wang, Q., Kurillo, G., Ofli, F., Bajcsy, R.: Evaluation of pose tracking accuracy in the first and second generations of microsoft kinect. In: Healthcare Informatics, pp. 380–389. IEEE (2015)
Yang, Y., Leung, H., Deng, L.: Automatic dance lesson generation. IEEE Trans. Learn. Technol. 191–198 (2011). IEEE
How often and why do people’s eyes blink? - The Boston Globe. Archive.boston.com (2016). http://archive.boston.com/news/science/articles/2007/05/14/how_often_and_why_do_peoples_eyes_blink/. Accessed 07 Nov 2016
NEC Corporation of Malaysia introduces Neoface® facial recognition solutions for the first time in Malaysia. Sg.nec.com (2016). http://sg.nec.com/en_AP/press/201408/ap_20140812_01.html. Accessed 8 Oct 2016
Review: KeyLemon, Biometric-solutions.com (2016). http://www.biometric-solutions.com/software/reviews.php?story=keylemon. Accessed 8 Oct 2016
Makwana, H., Singh, T.: Comparison of different algorithm for face recognition. Global J. Comput. Sci. Technol. Graph. Vis. 13(9) (2013)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24670-1_36
Singh, A.: Comparison of face recognition algorithms on dummy faces. Int. J. Multimed. Appl. 4(4), 121–135 (2012)
Muhammad, M.A.N., Ruhaiyem, N.I.R., Mohamed, A.S.A.: Keeping curiosity in local historical knowledge alive by sensor based simulation game using flash actionscript 3. In: Proceedings of the International Conference Local Knowledge (2016)
Ravi, P.L., Ruhaiyem, N.I.R.: Intelligent gameplay for improved retro games. J. Telecommun. Electron. Comput. Eng. (JTEC) 8(6), 23–26 (2016)
Acknowledgements
The author wish to thank Universiti Sains Malaysia for the support it has extended in the completion of the present research through Short Term University Grant No. 304/PKOMP/6313280.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Mohamed, A.S.A., Chingeng, P.S., Mat Isa, N.A., Surip, S.S. (2017). Body Matching Algorithm Using Normalize Dynamic Time Warping (NDTW) Skeleton Tracking for Traditional Dance Movement. In: Badioze Zaman, H., et al. Advances in Visual Informatics. IVIC 2017. Lecture Notes in Computer Science(), vol 10645. Springer, Cham. https://doi.org/10.1007/978-3-319-70010-6_62
Download citation
DOI: https://doi.org/10.1007/978-3-319-70010-6_62
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70009-0
Online ISBN: 978-3-319-70010-6
eBook Packages: Computer ScienceComputer Science (R0)