Abstract
Pulsar, as a hotspot in the field of astronomy, has a great help of electronic communications, cosmic media detection, and timing. Scientists expect to know the distributions that the data of pulsar features is most likely to be subject to. There are off-the-shelf approaches for scientific researchers to do that, while they are either not fully-using statistical properties or computing-resource-wasting. As an accurate and convenient solution to the problem, we propose a comprehensive fitting model with Bayesian prior knowledge to help scientists automatically fit pulsar data into the optimal expression.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lorimer, D.R., Kramer, M.: Handbook of Pulsar Astronomy. Cambridge University Press, Cambridge (2005)
Bates, S.D.: PsrPopPy: an open-source package for pulsar population simulations. Mon. Not. R. Astron. Soc. 439(3), 2893–2902 (2014)
Faucher-Giguere, C.A., Kaspi, V.M.: Birth and evolution of isolated radio pulsars. Astrophys. J. 643(1), 332 (2006)
Zwillinger, D., Kokoska, S.: CRC Standard Probability and Statistics Tables and Formulae. CRC Press, Boca Raton (1999)
D’agostino, R.B., Belanger, A., D’Agostino Jr., R.B.: A suggestion for using powerful and informative tests of normality. Am. Stat. 44(4), 316–321 (1990)
Anscombe, F.J., Glynn, W.J.: Distribution of the kurtosis statistic b 2 for normal samples. Biometrika 70(1), 227–234 (1983)
Shaphiro, S.S., Wilk, M.B.: An analysis of variance test for normality. Biometrika 52(3), 591–611 (1965)
Stephens, M.A.: EDF statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 69(347), 730–737 (1974)
Razali, N.M., Wah, Y.B.: Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Analytics 2(1), 21–33 (2011)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–38 (1977)
Manchester, R.N., Hobbs, G.B., Teoh, A., Hobbs, M.: The Australia telescope national facility pulsar catalogue. Astron. J. 129(4), 1993 (2005)
Nuzzo, R.: Statistical errors. Nature 506(7487), 150 (2014)
Lorimer, D.R., Faulkner, A.J., Lyne, A.G., Manchester, R.N., Kramer, M., McLaughlin, M.A., Burgay, M.: The Parkes Multibeam Pulsar SurveyCVI. Discovery and timing of 142 pulsars and a Galactic population analysis. Mon. Not. R. Astron. Soc. 372(2), 777–800 (2006)
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)
Kullback, S.: Information Theory and Statistics. Courier Corporation, New York (1997)
Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957)
Acknowledgments
The research work in this paper was supported by the grants from National Natural Science Foundation of China (61472043, 61375045) and the Joint Research Fund in Astronomy (U1531242) under cooperative agreement between the NSFC and CAS, Beijing Natural Science Foundation (4142030). Prof. Qian Yin is the author to whom all the correspondence should be addressed.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Yu, H., Yin, Q., Guo, P. (2017). Pulsar Bayesian Model: A Comprehensive Astronomical Data Fitting Model. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10634. Springer, Cham. https://doi.org/10.1007/978-3-319-70087-8_92
Download citation
DOI: https://doi.org/10.1007/978-3-319-70087-8_92
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70086-1
Online ISBN: 978-3-319-70087-8
eBook Packages: Computer ScienceComputer Science (R0)