Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pulsar Bayesian Model: A Comprehensive Astronomical Data Fitting Model

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10634))

Included in the following conference series:

  • 4740 Accesses

Abstract

Pulsar, as a hotspot in the field of astronomy, has a great help of electronic communications, cosmic media detection, and timing. Scientists expect to know the distributions that the data of pulsar features is most likely to be subject to. There are off-the-shelf approaches for scientific researchers to do that, while they are either not fully-using statistical properties or computing-resource-wasting. As an accurate and convenient solution to the problem, we propose a comprehensive fitting model with Bayesian prior knowledge to help scientists automatically fit pulsar data into the optimal expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lorimer, D.R., Kramer, M.: Handbook of Pulsar Astronomy. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  2. Bates, S.D.: PsrPopPy: an open-source package for pulsar population simulations. Mon. Not. R. Astron. Soc. 439(3), 2893–2902 (2014)

    Article  Google Scholar 

  3. Faucher-Giguere, C.A., Kaspi, V.M.: Birth and evolution of isolated radio pulsars. Astrophys. J. 643(1), 332 (2006)

    Article  Google Scholar 

  4. Zwillinger, D., Kokoska, S.: CRC Standard Probability and Statistics Tables and Formulae. CRC Press, Boca Raton (1999)

    Book  MATH  Google Scholar 

  5. D’agostino, R.B., Belanger, A., D’Agostino Jr., R.B.: A suggestion for using powerful and informative tests of normality. Am. Stat. 44(4), 316–321 (1990)

    Google Scholar 

  6. Anscombe, F.J., Glynn, W.J.: Distribution of the kurtosis statistic b 2 for normal samples. Biometrika 70(1), 227–234 (1983)

    MATH  MathSciNet  Google Scholar 

  7. Shaphiro, S.S., Wilk, M.B.: An analysis of variance test for normality. Biometrika 52(3), 591–611 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  8. Stephens, M.A.: EDF statistics for goodness of fit and some comparisons. J. Am. Stat. Assoc. 69(347), 730–737 (1974)

    Article  Google Scholar 

  9. Razali, N.M., Wah, Y.B.: Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Analytics 2(1), 21–33 (2011)

    Google Scholar 

  10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc. B 39(1), 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  11. Manchester, R.N., Hobbs, G.B., Teoh, A., Hobbs, M.: The Australia telescope national facility pulsar catalogue. Astron. J. 129(4), 1993 (2005)

    Article  Google Scholar 

  12. Nuzzo, R.: Statistical errors. Nature 506(7487), 150 (2014)

    Article  Google Scholar 

  13. Lorimer, D.R., Faulkner, A.J., Lyne, A.G., Manchester, R.N., Kramer, M., McLaughlin, M.A., Burgay, M.: The Parkes Multibeam Pulsar SurveyCVI. Discovery and timing of 142 pulsars and a Galactic population analysis. Mon. Not. R. Astron. Soc. 372(2), 777–800 (2006)

    Article  Google Scholar 

  14. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kullback, S.: Information Theory and Statistics. Courier Corporation, New York (1997)

    MATH  Google Scholar 

  16. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106(4), 620 (1957)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research work in this paper was supported by the grants from National Natural Science Foundation of China (61472043, 61375045) and the Joint Research Fund in Astronomy (U1531242) under cooperative agreement between the NSFC and CAS, Beijing Natural Science Foundation (4142030). Prof. Qian Yin is the author to whom all the correspondence should be addressed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Yu, H., Yin, Q., Guo, P. (2017). Pulsar Bayesian Model: A Comprehensive Astronomical Data Fitting Model. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10634. Springer, Cham. https://doi.org/10.1007/978-3-319-70087-8_92

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70087-8_92

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70086-1

  • Online ISBN: 978-3-319-70087-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics