Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Self-connection of Thalamic Reticular Nucleus Modulating Absence Seizures

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10637))

Included in the following conference series:

Abstract

Accumulating evidence has suggested that the corticothalamic system not only underlies the onset of absence seizures, but also provides functional roles in controlling absence seizures. However, few studies are involved in the roles of self-connection of thalamic reticular nucleus (TRN) in modulating absence seizures. To this end, we employ a biophysically based corticothalamic network mean-field model to explore these potential control mechanisms. We find that the inhibitory projection from the TRN to specific relay nuclei of thalamus (SRN) can shape the self-connection of TRN controlling absence seizures. Under certain condition, the self-connection of TRN can bidirectionally control absence seizures, which increasing or decreasing the coupling strength of the self-connection of TRN could successfully suppress absence seizures. These findings might provide a new perspective to understand the treatment of absence epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Crunelli, V., Leresche, N.: Childhood absence epilepsy genes, channels, neurons and networks. Nat. Rev. Neurosci. 3(5), 371–382 (2002)

    Article  Google Scholar 

  2. Moshé, S.L., Perucca, E., Ryvlin, P., Tomson, T.: Epilepsy: new advances. Lancet 385(9971), 884–898 (2015)

    Article  Google Scholar 

  3. Danober, L., Deransart, C., Depaulis, A., Vergnes, M., Marescaux, C.: Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog. Neurobiol. 55(1), 27–57 (1998)

    Article  Google Scholar 

  4. Blumenfeld, H.: Cellular and network mechanisms of spike-wave seizures. Epilepsia 46, 21–33 (2005)

    Article  Google Scholar 

  5. Avoli, M.: A brief history on the oscillating roles of thalamus and cortex in absence seizures. Epilepsia 53(5), 779–789 (2012)

    Article  Google Scholar 

  6. Deransart, C., Vercueil, L., Marescaux, C., Depaulis, A.: The role of basal ganglia in the control of generalized absence seizures. Epilepsy Res. 32(1–2), 213–223 (1998)

    Article  Google Scholar 

  7. Paz, J.T., Chavez, M., Saillet, S., Deniau, J.M., Charpier, S.: Activity of ventral medial thalamic neurons during absence seizures and modulation of cortical paroxysms by the nigrothalamic pathway. J. Neurosci. 27(4), 929–941 (2007)

    Article  Google Scholar 

  8. Luo, C., Li, Q., Xia, Y., Lei, X., Xue, K., Yao, Z., Lai, Y., Martínez-Montes, E., Liao, W., Zhou, D., Valdes-Sosa, P.A., Gong, Q., Yao, D.: Resting state basal ganglia network in idiopathic generalized epilepsy. Hum. Brain Mapp. 33(6), 1279–1294 (2012)

    Article  Google Scholar 

  9. Lüttjohann, A., van Luijtelaar, G.: Thalamic stimulation in absence epilepsy. Epilepsy Res. 106(1–2), 136–145 (2013)

    Article  Google Scholar 

  10. Paz, J.T., Davidson, T.J., Frechette, E.S., Delord, B., Parada, I., Peng, K., Deisseroth, K., Huguenard, J.R.: Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16(1), 64–70 (2013)

    Article  Google Scholar 

  11. Chen, M., Guo, D., Wang, T., Jing, W., Xia, Y., Xu, P., Luo, C., Valdes-Sosa, P.A., Yao, D.: Bidirectional control of absence seizures by the basal ganglia: a computational evidence. PLoS Comput. Biol. 10(3), 1–17 (2014)

    Article  Google Scholar 

  12. Chen, M., Guo, D., Li, M., Ma, T., Wu, S., Ma, J., Cui, Y., Xia, Y., Xu, P., Yao, D.: Critical roles of the direct gabaergic pallido-cortical pathway in controlling absence seizures. PLoS Comput. Biol. 11(10), 1–23 (2015)

    Article  Google Scholar 

  13. Chen, M., Guo, D., Xia, Y., Yao, D.: Control of absence seizures by the thalamic feed-forward inhibition. Front. Comput. Neurosci. 11, 31 (2017)

    Article  Google Scholar 

  14. Kros, L., Eelkman Rooda, O.H.J., Spanke, J.K., Alva, P., van Dongen, M.N., Karapatis, A., Tolner, E.A., Strydis, C., Davey, N., Winkelman, B.H.J., Negrello, M., Serdijn, W.A., Steuber, V., van den Maagdenberg, A.M.J.M., De Zeeuw, C.I., Hoebeek, F.E.: Cerebellar output controls generalized spike-and-wave discharge occurrence. Ann. Neurol. 77(6), 1027–1049 (2015)

    Article  Google Scholar 

  15. Paz, J.T., Huguenard, J.R.: Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat. Neurosci. 18(3), 351–359 (2015)

    Article  Google Scholar 

  16. Huguenard, J.R., Prince, D.A.: Clonazepam suppresses gabab-mediated inhibition in thalamic relay neurons through effects in nucleus reticularis. J. Neurophysiol. 71(6), 2576–2581 (1994)

    Google Scholar 

  17. Kim, U., Sanchez-Vives, M.V., McCormick, D.A.: Functional dynamics of gabaergic inhibition in the thalamus. Science 278(5335), 130–134 (1997)

    Article  Google Scholar 

  18. Huntsman, M.M., Porcello, D.M., Homanics, G.E., DeLorey, T.M., Huguenard, J.R.: Reciprocal inhibitory connections and network synchrony in the mammalian thalamus. Science 283(5401), 541–543 (1999)

    Article  Google Scholar 

  19. Robinson, P.A., Rennie, C.J., Wright, J.J.: Propagation and stability of waves of electrical activity in the cerebral cortex. Phys. Rev. E 56, 826–840 (1997)

    Article  Google Scholar 

  20. Robinson, P.A., Rennie, C.J., Rowe, D.L.: Dynamics of large-scale brain activity in normal arousal states and epileptic seizures. Phys. Rev. E 65, 041924 (2002)

    Article  Google Scholar 

  21. Breakspear, M., Roberts, J.A., Terry, J.R., Rodrigues, S., Mahant, N., Robinson, P.A.: A unifying explanation of primary generalized seizures through nonlinear brain modeling and bifurcation analysis. Cereb. Cortex 16(9), 1296–1313 (2006)

    Article  Google Scholar 

  22. Marten, F., Rodrigues, S., Benjamin, O., Richardson, M.P., Terry, J.R.: Onset of polyspike complexes in a mean-field model of human electroencephalography and its application to absence epilepsy. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 367(1891), 1145–1161 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 81571770, 61527815, 81401484 and 81330032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daqing Guo .

Editor information

Editors and Affiliations

Appendix: The Corticothalamic Network Mean-Field Model

Appendix: The Corticothalamic Network Mean-Field Model

To obtain the corticothalamic network mean-field model, we assume that absence seizures are involved in the whole brain, so that the spatial effect is ignored in this model. Also, based on the assumption that intracortical connections are proportional to the synapses involved, we have \(V_{i}=V_{e}\) and \(Q_{i}=Q_{e}\). Note that both of these assumptions are in line with previous studies [11,12,13, 20, 21]. Accordingly, the corticothalamic network mean-field equations are given in the following:

$$\begin{aligned} \frac{\texttt {d}{\phi _e}(t)}{\texttt {d}t}=\dot{\phi }_{e}(t) \end{aligned}$$
(1)
$$\begin{aligned} \frac{\texttt {d}\dot{\phi }_{e}(t)}{\texttt {d}t}=\gamma _{e}^{2}\left\{ -{\phi _e(t)}+ {F[V_e(t)]}\right\} -2{\gamma _e}{\dot{\phi }_{e}(t)} \end{aligned}$$
(2)
$$\begin{aligned} \frac{\texttt {d}{V_e(t)}}{\texttt {d}t}=\dot{V}_{e}(t) \end{aligned}$$
(3)
$$\begin{aligned} \frac{\texttt {d}\dot{V}_{e}(t)}{\texttt {d}t}={\alpha }{\beta }\left\{ -{V_e(t)}+v_{ee}{\phi _{e}(t)}+v_{ei}{F[V_e(t)]} +v_{es}{F[V_s(t)]}\right\} -({\alpha }+{\beta })\dot{V}_{e}(t) \end{aligned}$$
(4)
$$\begin{aligned} \frac{\texttt {d}{V_r(t)}}{\texttt {d}t}=\dot{V}_{r}(t) \end{aligned}$$
(5)
$$\begin{aligned} \frac{\texttt {d}\dot{V}_{r}(t)}{\texttt {d}t}={\alpha }{\beta }\left\{ -{V_{r}(t)}+v_{re}{\phi _{e}(t)} +v_{rs}{F[V_s(t)]}+v_{rr}{F[V_r(t)]}\right\} -({\alpha }+{\beta })\dot{V}_{r}(t) \end{aligned}$$
(6)
$$\begin{aligned} \frac{\texttt {d}{V_s(t)}}{\texttt {d}t}=\dot{V}_{s}(t) \end{aligned}$$
(7)
$$\begin{aligned} D_{s}={\alpha }{\beta }\left\{ -{V_{s}(t)}+v_{se}{\phi _{e}(t)} +v{_{sr}^{A}}{F[V_r(t)]}+v{_{sr}^{B}}{F[V_r(t-\tau )]}+\phi _{n}\right\} \end{aligned}$$
(8)
$$\begin{aligned} \frac{\texttt {d}\dot{V}_{s}(t)}{\texttt {d}t}=D_{s}-({\alpha }+{\beta })\dot{V}_{s}(t) \end{aligned}$$
(9)

Here, \(\phi _{a}\) (\(a={e, i, r, s}\)) shows the propagating axonal fields of the neural population a, \(v_{ab}\) describes the coupling strength from the neural population b to the neural population a. The inverses of \(\alpha \) and \(\beta \) represent the decay and rise time constants, respectively. \(\gamma _{e}\) governs the temporal damping rate of cortical excitatory pulses. \(V_{a}\) denotes the mean membrane potential, through which the mean firing rate \(Q_{a}\) can be obtained with the sigmoid function \(F[{V}_{a}(t)]\) [11, 12, 20] given by

$$\begin{aligned} Q_{a}(t)\equiv {F}[{V}_{a}(t)]=\frac{{Q}_{a}^{max}}{1+{\texttt {exp}}[-{\frac{\pi }{\sqrt{3}}} {\frac{({V}_{a}(t)-{\theta }_{a})}{\sigma }}]} \end{aligned}$$
(10)

where \(Q_{a}^{max}\) denotes the maximum firing rate, \(\theta _{a}\) shows the mean firing threshold, and \(\sigma \) is the standard deviation of the mean firing threshold.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Guo, D., Chen, M., Xia, Y., Yao, D. (2017). Self-connection of Thalamic Reticular Nucleus Modulating Absence Seizures. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, ES. (eds) Neural Information Processing. ICONIP 2017. Lecture Notes in Computer Science(), vol 10637. Springer, Cham. https://doi.org/10.1007/978-3-319-70093-9_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70093-9_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70092-2

  • Online ISBN: 978-3-319-70093-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics