Abstract
In the paper several extensions of a successful EDA-type algorithm, namely \(COMMA_{op}\), inspired by the paradigm of agent-based computing (EMAS) are presented. The proposed algorithms leveraging notions connected with EMAS, such as reproduction and death, or even the population decomposition, turn out to be better than the original algorithm. The evidence for this is presented in the end of the paper, utilizing QAP problems by Éric Taillard as benchmarks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-box optimization. Theor. Comput. Syst. 39, 525–544 (2006)
Wolpert, D., Macready, W.: No free lunch theorems for search. Technical report SFI-TR-02-010, Santa Fe Institute (1995)
Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Chichester (2009)
Michalewicz, Z.: Genetic Algorithms Plus Data Structures Equals Evolution Programs. Springer, New York (1994)
Larranaga, P., Lozano, J.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Springer, US (2002)
Regnier-Coudert, O., McCall, J.: Competing mutating agents for Bayesian network structure learning. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) Parallel Problem Solving from Nature - PPSN XII, PPSN 2012. LNCS, vol. 7491, pp. 216–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_22
Regnier-Coudert, O., McCall, J., Ayodele, M.: Geometric-based sampling for permutation optimization. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO 2013, pp. 399–406. ACM, New York (2013)
Byrski, A.: Agent-Based Metaheuristics in Search and Optimisation. AGH University of Science and Technology Press, Kraków (2013)
Kisiel-Dorohinicki, M., Dobrowolski, G., Nawarecki, E.: Agent populations as computational intelligence. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. Advances in Soft Computing, vol. 19, pp. 608–613. Physica, Heidelberg (2003). https://doi.org/10.1007/978-3-7908-1902-1_93
Byrski, A.: Tuning of agent-based computing. Comput. Sci. 14(3), 491 (2013)
Wróbel, K., Torba, P., Paszyński, M., Byrski, A.: Evolutionary multi-agent computing in inverse problems. Comput. Sci. 14(3), 367 (2013)
Dreżewski, R., Siwik, L.: Multi-objective optimization technique based on co-evolutionary interactions in multi-agent system. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 179–188. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71805-5_20
Dreżewski, R., Siwik, L.: Co-evolutionary multi-agent system for portfolio optimization. In: Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance. Studies in Computational Intelligence, vol. 100, pp. 271–299. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77477-8_15
Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems. Prog. Artif. Intell. 1(1), 103–117 (2012)
Pelikan, M., Hauschild, M., Lobo, F.: Introduction to estimation of distribution algorithms. Technical report 2012003, Missouri Estimation of Distribution Algorithms Laboratory (2012)
Cetnarowicz, K., Kisiel-Dorohinicki, M., Nawarecki, E.: The application of evolution process in multi-agent world (MAW) to the prediction system. In: Tokoro, M. (ed.) Proceedings of the 2nd International Conference on Multi-agent Systems (ICMAS 1996). AAAI Press (1996)
Byrski, A., Korczynski, W., Kisiel-Dorohinicki, M.: Memetic multi-agent computing in difficult continuous optimisation. In: KES-AMSTA, pp. 181–190 (2013)
Cantú-Paz, E.: A summary of research on parallel genetic algorithms. IlliGAL Report No. 95007. University of Illinois (1995)
Byrski, A., Schaefer, R., Smołka, M.: Asymptotic guarantee of success for multi-agent memetic systems. Bull. Pol. Acad. Sci.-Tech. Sci. 61(1), 257–278 (2013)
Byrski, A., Schaefer, R.: Formal model for agent-based asynchronous evolutionary computation. In: 2009 IEEE Congress on Evolutionary Computation, pp. 78–85, May 2009
Schaefer, R., Byrski, A., Smolka, M.: The island model as a Markov dynamic system. Int. J. Appl. Math. Comput. Sci. 22(4), 971–984 (2012)
Bugajski, I., Listkiewicz, P., Byrski, A., Kisiel-Dorohinicki, M., Korczynski, W., Lenaerts, T., Samson, D., Indurkhya, B., Nowé, A.: Enhancing particle swarm optimization with socio-cognitive inspirations. Procedia Comput. Sci. 80, 804–813 (2016). International Conference on Computational Science 2016, ICCS 2016, 6–8 June 2016, San Diego, California, USA
Byrski, A., Świderska, E., Łasisz, J., Kisiel-Dorohinicki, M., Lenaerts, T., Samson, D., Indurkhya, B., Nowé, A.: Socio-cognitively inspired ant colony optimization. J. Comput. Sci. 21(Suppl. C), 397–406 (2017). https://doi.org/10.1016/j.jocs.2016.10.010
Koopmans, T., Beckmann, M.: Assignment problems and the location of economics activities. Econometrica 25, 53–76 (1957)
Shani, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23, 555–565 (1976)
Gambardella, L.M., Taillard, É.D., Dorigo, M.: Ant colonies for the quadratic assignment problem. J. Oper. Res. Soc. 50(2), 167–176 (1999)
Acknowledgment
This research was supported by AGH University of Science and Technology Statutory Fund.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Byrski, A., Kisiel-Dorohinicki, M., Tusiński, N. (2017). Extending Estimation of Distribution Algorithms with Agent-Based Computing Inspirations. In: Mercik, J. (eds) Transactions on Computational Collective Intelligence XXVII. Lecture Notes in Computer Science(), vol 10480. Springer, Cham. https://doi.org/10.1007/978-3-319-70647-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-319-70647-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70646-7
Online ISBN: 978-3-319-70647-4
eBook Packages: Computer ScienceComputer Science (R0)