Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Extending Estimation of Distribution Algorithms with Agent-Based Computing Inspirations

  • Chapter
  • First Online:
Transactions on Computational Collective Intelligence XXVII

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 10480))

Abstract

In the paper several extensions of a successful EDA-type algorithm, namely \(COMMA_{op}\), inspired by the paradigm of agent-based computing (EMAS) are presented. The proposed algorithms leveraging notions connected with EMAS, such as reproduction and death, or even the population decomposition, turn out to be better than the original algorithm. The evidence for this is presented in the end of the paper, utilizing QAP problems by Éric Taillard as benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://mistic.heig-vd.ch/taillard/problemes.dir/qap.dir/qap.html.

References

  1. Droste, S., Jansen, T., Wegener, I.: Upper and lower bounds for randomized search heuristics in black-box optimization. Theor. Comput. Syst. 39, 525–544 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Wolpert, D., Macready, W.: No free lunch theorems for search. Technical report SFI-TR-02-010, Santa Fe Institute (1995)

    Google Scholar 

  3. Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Chichester (2009)

    Book  MATH  Google Scholar 

  4. Michalewicz, Z.: Genetic Algorithms Plus Data Structures Equals Evolution Programs. Springer, New York (1994)

    Book  MATH  Google Scholar 

  5. Larranaga, P., Lozano, J.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Springer, US (2002)

    Book  MATH  Google Scholar 

  6. Regnier-Coudert, O., McCall, J.: Competing mutating agents for Bayesian network structure learning. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) Parallel Problem Solving from Nature - PPSN XII, PPSN 2012. LNCS, vol. 7491, pp. 216–225. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_22

  7. Regnier-Coudert, O., McCall, J., Ayodele, M.: Geometric-based sampling for permutation optimization. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, GECCO 2013, pp. 399–406. ACM, New York (2013)

    Google Scholar 

  8. Byrski, A.: Agent-Based Metaheuristics in Search and Optimisation. AGH University of Science and Technology Press, Kraków (2013)

    Google Scholar 

  9. Kisiel-Dorohinicki, M., Dobrowolski, G., Nawarecki, E.: Agent populations as computational intelligence. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. Advances in Soft Computing, vol. 19, pp. 608–613. Physica, Heidelberg (2003). https://doi.org/10.1007/978-3-7908-1902-1_93

  10. Byrski, A.: Tuning of agent-based computing. Comput. Sci. 14(3), 491 (2013)

    Article  Google Scholar 

  11. Wróbel, K., Torba, P., Paszyński, M., Byrski, A.: Evolutionary multi-agent computing in inverse problems. Comput. Sci. 14(3), 367 (2013)

    Article  Google Scholar 

  12. Dreżewski, R., Siwik, L.: Multi-objective optimization technique based on co-evolutionary interactions in multi-agent system. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 179–188. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71805-5_20

    Google Scholar 

  13. Dreżewski, R., Siwik, L.: Co-evolutionary multi-agent system for portfolio optimization. In: Brabazon, A., O’Neill, M. (eds.) Natural Computing in Computational Finance. Studies in Computational Intelligence, vol. 100, pp. 271–299. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77477-8_15

  14. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A review on estimation of distribution algorithms in permutation-based combinatorial optimization problems. Prog. Artif. Intell. 1(1), 103–117 (2012)

    Article  MATH  Google Scholar 

  15. Pelikan, M., Hauschild, M., Lobo, F.: Introduction to estimation of distribution algorithms. Technical report 2012003, Missouri Estimation of Distribution Algorithms Laboratory (2012)

    Google Scholar 

  16. Cetnarowicz, K., Kisiel-Dorohinicki, M., Nawarecki, E.: The application of evolution process in multi-agent world (MAW) to the prediction system. In: Tokoro, M. (ed.) Proceedings of the 2nd International Conference on Multi-agent Systems (ICMAS 1996). AAAI Press (1996)

    Google Scholar 

  17. Byrski, A., Korczynski, W., Kisiel-Dorohinicki, M.: Memetic multi-agent computing in difficult continuous optimisation. In: KES-AMSTA, pp. 181–190 (2013)

    Google Scholar 

  18. Cantú-Paz, E.: A summary of research on parallel genetic algorithms. IlliGAL Report No. 95007. University of Illinois (1995)

    Google Scholar 

  19. Byrski, A., Schaefer, R., Smołka, M.: Asymptotic guarantee of success for multi-agent memetic systems. Bull. Pol. Acad. Sci.-Tech. Sci. 61(1), 257–278 (2013)

    Google Scholar 

  20. Byrski, A., Schaefer, R.: Formal model for agent-based asynchronous evolutionary computation. In: 2009 IEEE Congress on Evolutionary Computation, pp. 78–85, May 2009

    Google Scholar 

  21. Schaefer, R., Byrski, A., Smolka, M.: The island model as a Markov dynamic system. Int. J. Appl. Math. Comput. Sci. 22(4), 971–984 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bugajski, I., Listkiewicz, P., Byrski, A., Kisiel-Dorohinicki, M., Korczynski, W., Lenaerts, T., Samson, D., Indurkhya, B., Nowé, A.: Enhancing particle swarm optimization with socio-cognitive inspirations. Procedia Comput. Sci. 80, 804–813 (2016). International Conference on Computational Science 2016, ICCS 2016, 6–8 June 2016, San Diego, California, USA

    Article  Google Scholar 

  23. Byrski, A., Świderska, E., Łasisz, J., Kisiel-Dorohinicki, M., Lenaerts, T., Samson, D., Indurkhya, B., Nowé, A.: Socio-cognitively inspired ant colony optimization. J. Comput. Sci. 21(Suppl. C), 397–406 (2017). https://doi.org/10.1016/j.jocs.2016.10.010

    Article  Google Scholar 

  24. Koopmans, T., Beckmann, M.: Assignment problems and the location of economics activities. Econometrica 25, 53–76 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shani, S., Gonzalez, T.: P-complete approximation problems. J. ACM 23, 555–565 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gambardella, L.M., Taillard, É.D., Dorigo, M.: Ant colonies for the quadratic assignment problem. J. Oper. Res. Soc. 50(2), 167–176 (1999)

    Article  MATH  Google Scholar 

Download references

Acknowledgment

This research was supported by AGH University of Science and Technology Statutory Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksander Byrski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Byrski, A., Kisiel-Dorohinicki, M., Tusiński, N. (2017). Extending Estimation of Distribution Algorithms with Agent-Based Computing Inspirations. In: Mercik, J. (eds) Transactions on Computational Collective Intelligence XXVII. Lecture Notes in Computer Science(), vol 10480. Springer, Cham. https://doi.org/10.1007/978-3-319-70647-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70647-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70646-7

  • Online ISBN: 978-3-319-70647-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics