Abstract
Currently, Linked Open Data (LOD) is increasingly used when publishing life science databases. To facilitate flexible use of such databases, we employ a method that uses federated query search along a path of class–class relationships. However, an effective method for federated query search requires analysis of the structure the relationships form for LOD datasets. Therefore, we constructed a graph of class–class relationships among 43 SPARQL endpoints and analyzed the connectivity of the graph. As a result, we found that (1) the sizes of connected components follow a power law; thus we should deal with the classes separately according to the size of connected components, (2) only the largest and second largest connected components have paths among classes from two or more SPARQL endpoints, and the datasets of each of the two connected components share ontologies, and (3) key classes that connect SPARQL endpoints are primarily upper-level concepts in the biological domain.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Heim, P., Hellmann, S., Lehmann, J., Lohmann, S., Stegemann, T.: RelFinder: revealing relationships in RDF knowledge bases. In: Chua, T.-S., Kompatsiaris, Y., Mérialdo, B., Haas, W., Thallinger, G., Bailer, W. (eds.) SAMT 2009. LNCS, vol. 5887, pp. 182–187. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10543-2_21
Yamaguchi, A., Kozaki, K., Lenz, K., Yamamoto, Y., Masuya, H., Kobayashi, N.: Semantic data acquisition by traversing class-class relationships over linkedopen data. In: 6th Joint International Conference (JIST 2016), LNCS 10055, pp. 136-151(2016)
Vasilevsky, N., Johnson, T., Corday, K., Torniai, C., Brush, M., Segerdell, E., Wilson, M., Shaffer, C., Robinson, D., Haendel, M.: Research resources: curating the new eagle-i discovery system. Database 2012, bar067 (2012). https://doi.org/10.1093/database/bar067
Yamamoto, Y., Yamaguchi, A., Bono, H., Takagi, T.: Allie: a database and a search service of abbreviations and long forms. Database 2011, bar013 (2011). https://doi.org/10.1093/database/bar013
Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform. 41(5), 706–716 (2008)
Gile, C.L., Bollacker, K.D., Lawrence, S.: CiteSeer: an automatic citation indexing system. In: Proceedings of the Third ACM Conference on Digital Libraries (DL 98), pp. 89–98 (1998)
Piñero, J., Queralt-Rosinach, N., Bravo, À., Deu-Pons, J., Bauer-Mehren, A., Baron, M., Sanz, F., Furlong, L.I.: DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database (2015). https://doi.org/10.1093/database/bav028
Jupp, S., Malone, J., Bolleman, J., Brandizi, M., Davies, M., Garcia, L., Gaulton, A., Gehant, S., Laibe, C., Redaschi, N., Wimalaratne, S.M., Martin, M., Le Novére, N., Parkinson, H., Birney, E., Jenkinson, A.M.: The EBI RDF platform: linked open data for the life sciences. Bioinformatics 30(9), 1338–1339 (2014)
Hassanzadeh, O., Miller, R.J.: Automatic Curation of Clinical Trials Data in LinkedCT. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 270–278. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25010-6_16
Acknowledgments
This work was supported by JSPS KAKENHI grant numbers 17K00434, 17K00424 and 17H01789, and by the National Bioscience Database Center (NBDC) of the Japan Science and Technology Agency (JST).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Yamaguchi, A., Kozaki, K., Yamamoto, Y., Masuya, H., Kobayashi, N. (2017). Semantic Graph Analysis for Federated LOD Surfing in Life Sciences. In: Wang, Z., Turhan, AY., Wang, K., Zhang, X. (eds) Semantic Technology. JIST 2017. Lecture Notes in Computer Science(), vol 10675. Springer, Cham. https://doi.org/10.1007/978-3-319-70682-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-70682-5_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-70681-8
Online ISBN: 978-3-319-70682-5
eBook Packages: Computer ScienceComputer Science (R0)