Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Plausibility Regions on Parameters of the Skew Normal Distribution Based on Inferential Models

  • Conference paper
  • First Online:
Predictive Econometrics and Big Data (TES 2018)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 753))

Included in the following conference series:

  • 2200 Accesses

Abstract

In this paper, plausibility functions and \(100(1-\alpha )\%\) plausibility regions on location parameter and scale parameter of skew normal distributions are obtained in several cases by using inferential models (IMs), which are new methods of statistical inference. Simulation studies and one real data example are given for illustration of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azzalini, A.: A class of distributions which includes the normal ones. Scand. J. Stat. 12(2), 171–178 (1985)

    MathSciNet  MATH  Google Scholar 

  2. Azzalini, A.: The Skew-Normal and Related Families, vol. 3. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  3. Azzalini, A., Capitanio, A.: Statistical applications of the multivariate skew normal distribution. J. R. Stat. Soc. 61(3), 579–602 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Azzalini, A., Dalla, V.A.: The multivariate skew-normal distribution. Biometrika 83(4), 715–726 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. González-Farías, G., Domínguez-Molina, A., Gupta, A.K.: Additive properties of skew normal random vectors. J. Stat. Plan. Infer. 126(2), 521–534 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Martin, R.: Random sets and exact confidence regions. Sankhya A 76(2), 288–304 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Martin, R., Lingham, R.T.: Prior-free probabilistic prediction of future observations. Technometrics 58(2), 225–235 (2016)

    Article  MathSciNet  Google Scholar 

  8. Martin, R., Liu, C.: Inferential models: a framework for prior-free posterior probabilistic inference. J. Am. Stat. Assoc. 108(501), 301–313 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Martin, R., Liu, C.: Inferential Models: Reasoning with Uncertainty, vol. 145. CRC Press, New York (2015)

    MATH  Google Scholar 

  10. Tian, W., Wang, T.: Quadratic forms of refined skew normal models based on stochastic representation. Random Oper. Stochast. Equ. 24(4), 225–234 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Wang, T., Li, B., Gupta, A.K.: Distribution of quadratic forms under skew normal settings. J. Multivar. Anal. 100(3), 533–545 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, Z., Wang, C., Wang, T.: Estimation of location parameter in the skew normal setting with known coefficient of variation and skewness. Int. J. Intell. Technol. Appl. Stat. 9(3), 191–208 (2016)

    Google Scholar 

  13. Ye, R., Wang, T.: Inferences in linear mixed models with skew-normal random effects. Acta Math. Sin. English Ser. 31(4), 576–594 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ye, R., Wang, T., Gupta, A.K.: Distribution of matrix quadratic forms under skew-normal settings. J. Multivar. Anal. 131, 229–239 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhu, X., Ma, Z., Wang, T., Teetranont, T.: Plausibility regions on the skewness parameter of skew normal distributions based on inferential models. In: Robustness in Econometrics, pp. 267–286. Springer (2017)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Professor Hung T. Nguyen for introducing this interesting topic to us and referees for their valuable comments and suggestions which improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonghui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, X., Li, B., Wu, M., Wang, T. (2018). Plausibility Regions on Parameters of the Skew Normal Distribution Based on Inferential Models. In: Kreinovich, V., Sriboonchitta, S., Chakpitak, N. (eds) Predictive Econometrics and Big Data. TES 2018. Studies in Computational Intelligence, vol 753. Springer, Cham. https://doi.org/10.1007/978-3-319-70942-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70942-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70941-3

  • Online ISBN: 978-3-319-70942-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics