Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parallel Numerical Methods Course for Future Scientists and Engineers

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 793))

Included in the following conference series:

Abstract

The rise of computational science has facilitated rapid progress in many areas of science and technology over the last decade. There is a growing demand in computational scientists and engineers capable of efficient collaboration in interdisciplinary groups. Training such specialists includes courses on numerical analysis and parallel computing. In this paper we present a new Master’s course Parallel Numerical Methods which bridges the gap between theoretical aspects of numerical methods and issues of implementation for modern multicore and manycore systems. The course aims to guide students through the complete process of solving computational problems, from a problem statement to developing parallel software and analyzing results of computational experiments. An important feature is that many of practical classes are based on research done at the HPC Center of the University of Nizhni Novgorod and therefore illustrate issues, which students may encounter in their research and future career.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bastrakov, S., Meyerov, I., Gergel, V., Gonoskov, A., Gorshkov, A., Efimenko, E., et al.: High performance computing in biomedical applications. Procedia Comput. Sci. 18, 10–19 (2013)

    Article  Google Scholar 

  2. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, vol. 12. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  3. Mathews, J.H., Fink, K.D.: Numerical Methods Using MATLAB, vol. 31. Prentice hall, Upper Saddle River (1999)

    Google Scholar 

  4. Hamming, R.: Numerical Methods for Scientists and Engineers. Courier Corporation (2012)

    Google Scholar 

  5. Andrews, G.R.: Foundations of Parallel and Distributed Programming. Addison-Wesley Longman Publishing Co. Inc., Boston (1999)

    Google Scholar 

  6. Prasad, S.K., Gupta, A., Rosenberg, A.L., Sussman, A., Weems, C.C.: Topics in Parallel and Distributed Computing: Introducing Concurrency in Undergraduate Courses, 1st edn. Morgan Kaufmann, San Francisco (2015)

    Google Scholar 

  7. Jeffers, J., Reinders, J. (Eds.): High Performance Parallelism Pearls: Multicore and Many-core Programming Approaches, 1st edn. (2014)

    Google Scholar 

  8. Jeffers, J., Reinders, J., Sodani, A. (Eds.): Intel® Xeon Phi™ Processor High Performance Programming, Knights Landing Edition (2016)

    Google Scholar 

  9. Hwu, W.-M.W. (Ed.): GPU Computing Gems Jade Edition. Morgan Kaufmann (2011)

    Google Scholar 

  10. Introduction to numerical methods (2010). Accessed Jan 2017. MIT Open Courseware: http://ocw.mit.edu/courses/mathematics/18-335j-introduction-to-numerical-methods-fall-2010

  11. Introduction to numerical analysis (2004). http://ocw.mit.edu/courses/mathematics/18-330-introduction-to-numerical-analysis-spring-2004

  12. CME206 – Introduction to Numerical Methods for Engineering (2016). http://scpd.stanford.edu/search/publicCourseSearchDetails.do?method=load&courseId=11683

  13. Math 128A: Numerical Analysis (2014). Accessed Jan 2017. http://persson.berkeley.edu/128A

  14. Course MAT321 Numerical Methods (2014). Accessed Jan 2017. https://www.math.princeton.edu/undergraduate/course/MAT321

  15. Burden, R., Faires, J.: Numerical Analysis, 9th edn. Brooks-Cole, Boston (2010)

    MATH  Google Scholar 

  16. Kincaid, D., Cheney, E.: Numerical Mathematics and Computing, 7th edn. Brooks-Cole, Boston (2012)

    MATH  Google Scholar 

  17. Demmel, J.: Matrix Computations/ Numerical Linear Algebra (2016). https://people.eecs.berkeley.edu/~demmel/ma221_Spr16

  18. Saad, Y.: Computational Aspects of Matrix Theory, Sparse Matrix Computations (2015). http://www-users.cs.umn.edu/~saad/teaching.html

  19. Dongarra, J.: Scientific Computing for Engineers: Spring 2012 (2012). http://www.netlib.org/utk/people/JackDongarra/WEB-PAGES/SPRING-2012/cs594-2012.htm

  20. Heath, M.: Parallel numerical algorithms (2013). http://www.mat.unimi.it/users/pavarino/heath_2013

  21. Edelman, A.: Numerical Computing with julia (2016). http://courses.csail.mit.edu/18.337/2016/calendar.html

  22. Gergel, V., Liniov, A., Meyerov, I., Sysoyev, A.: NSF/IEEE-TCPP curriculum implementation at University of Nizhni Novgorod. In: Proceedings of Fourth NSF/TCPP Workshop on Parallel and Distributed Computing Education, pp. 1079–1084 (2014)

    Google Scholar 

  23. Muller, J.M., Brisebarre, N., De Dinechin, F.: Handbook of Floating-Point Arithmetic. Springer (2009)

    Google Scholar 

  24. Pirova, A., Meyerov, I., Kozinov, E., Lebedev, S.: PMORSy: parallel sparse matrix ordering software for fill-in minimization. Optim. Method. Softw. 32, 274–289 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  25. Meyerov, I., Sysoyev, A., Astafiev, N., Burylov, I.: Performance optimization of Black-Scholes pricing. In: Jeffers, J., Reinders, J. (Eds.) High Performance Parallelism Pearls: Multicore and Many-core Programming Approaches, pp. 319–340 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Gergel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meyerov, I., Bastrakov, S., Barkalov, K., Sysoyev, A., Gergel, V. (2017). Parallel Numerical Methods Course for Future Scientists and Engineers. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2017. Communications in Computer and Information Science, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-71255-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71255-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71254-3

  • Online ISBN: 978-3-319-71255-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics