Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Canonical Selection of Colimits

  • Conference paper
  • First Online:
Recent Trends in Algebraic Development Techniques (WADT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10644))

Included in the following conference series:

  • 312 Accesses

Abstract

Colimits are a powerful tool for the combination of objects in a category. In the context of modeling and specification, they are used in the institution-independent semantics (1) of instantiations of parameterised specifications (e.g. in the specification language CASL), and (2) of combinations of networks of specifications (in the OMG standardised language DOL).

The problem of using colimits as the semantics of certain language constructs is that they are defined only up to isomorphism. However, the semantics of a complex specification in these languages is given by a signature and a class of models over that signature – not by an isomorphism class of signatures. This is particularly relevant when a specification with colimit semantics is further translated or refined. The user needs to know the symbols of a signature for writing a correct refinement.

Therefore, we study how to usefully choose one representative of the isomorphism class of all colimits of a given diagram. We develop criteria that colimit selections should meet. We work over arbitrary inclusive categories, but start the study how the criteria can be met with \(\mathbb Set\)-like categories, which are often used as signature categories for institutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    When we use the term specification, our theory applies equally to ontologies and models, provided these have a formal semantics as theories of some institution.

  2. 2.

    That is, with the same objects as \(\mathbf {C}\).

  3. 3.

    For inclusive categories for which the symbol functor uniquely lifts colimits, solving colimit selection for \(\mathbb Set\) already suffices. However, the inclusive categories studied in Sect. 4.3 typically do not enjoy this property.

  4. 4.

    It is straightforward but not essential here to make the notion of sentence precise.

  5. 5.

    CASL has a mechanism of “compound identifiers” that ensures name-clash-freeness in multiple instantiations of parametrised specifications, such as List[List[Elem]], see [16], p.47f. and p.224f.

  6. 6.

    Note that this construction extends to institutions, yielding Grothendieck institutions, see [5].

  7. 7.

    In some languages, # is used instead of/. But this has the disadvantage that, when used as an IRL, the fragment following the # is not transmitted to servers.

References

  1. Baumeister, H., Cerioli, M., Haxthausen, A., Mossakowski, T., Mosses, P.D., Sannella, D., Tarlecki, A.: CASL Semantics. In: Mosses, P.D. (ed.) CASL Reference Manual, Part III. LNCS, vol. 2960. Springer, London (2004). Edited by Sannella, D., Tarlecki, A

    Google Scholar 

  2. Borceux, F.: Handbook of Categorical Algebra I - III. Cambridge University Press, Cambridge (1994)

    Book  MATH  Google Scholar 

  3. Căzănescu, V.E., Rosu, G.: Weak inclusion systems. Math. Struct. Comput. Sci. 7(2), 195–206 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Codescu, M., Mossakowski, T.: Heterogeneous colimits. In: Boulanger, F., Gaston, C., Schobbens, P.-Y. (ed.) MoVaH 2008 Workshop. IEEE Press (2008)

    Google Scholar 

  5. Diaconescu, R.: Institution-Independent Model Theory. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  6. Diaconescu, R., Goguen, J.A., Stefaneas, P.: Logical support for modularisation. In: 2nd Workshop on Logical Environments, pp. 83–130. CUP, New York (1993)

    Google Scholar 

  7. Goguen, J.A.: A categorical manifesto. Math. Struct. Comput. Sci. 1, 49–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39, 95–146 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. W3C SEmantic Web Deployment Working Group. Best practice recipes for publishing RDF vocabularies. W3C Working Group Note, 28 August 2008. http://www.w3.org/TR/2008/NOTE-swbp-vocab-pub-20080828/

  10. Kutz, O., Bateman, J., Mossakowski, T., Neuhaus, F., Bhatt, M.: E pluribus unum - formalisation, use-cases, and computational support for conceptual blending. In: Besold, T.R., Schorlemmer, M., Smaill, A. (eds.) Computational Creativity Research: Towards Creative Machines. Atlantis Thinking Machines, vol. 7, pp. 167–196. Atlantis Press (2015)

    Google Scholar 

  11. Mossakowski, T.: Colimits of order-sorted specifications. In: Presicce, F.P. (ed.) WADT 1997. LNCS, vol. 1376, pp. 316–332. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-64299-4_42

    Chapter  Google Scholar 

  12. Mossakowski, T.: Specifications in an arbitrary institution with symbols. In: Bert, D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 252–270. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-44616-3_15

    Chapter  Google Scholar 

  13. Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1_40

    Chapter  Google Scholar 

  14. Mossakowski, T., Kutz, O., Codescu, M., Lange, C.: The distributed ontology, modeling and specification language. In: Del Vescovo, C., Hahmann, T., Pearce, D., Walther, D. (eds) WoMo 2013, CEUR-WS Online Proceedings, vol. 1081 (2013)

    Google Scholar 

  15. Mossakowski, T., Tarlecki, A.: Heterogeneous logical environments for distributed specifications. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 266–289. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03429-9_18

    Chapter  Google Scholar 

  16. Mosses, P.D. (ed.): Casl Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004). https://doi.org/10.1007/b96103

    MATH  Google Scholar 

  17. Object Management Group: The distributed ontology, modeling, and specification language (DOL) 2015. OMG draft standard: http://www.omg.org/spec/DOL/

  18. Rabe, F.: How to Identify, Translate, and Combine Logics? J. Logic Comput. (2014). https://doi.org/10.1093/logcom/exu079

  19. Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Inf. Comput. 76, 165–210 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schröder, L., Mossakowski, T.: Hascasl: integrated higher-order specification and program development. Theor. Comput. Sci. 410(12–13), 1217–1260 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schultz, P., Spivak, D.I., Vasilakopoulou, C., Wisnesky, R.: Algebraic databases. CoRR, abs/1602.03501 (2016)

    Google Scholar 

  22. Smith, D.R.: Composition by colimit and formal software development. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060, pp. 317–332. Springer, Heidelberg (2006). https://doi.org/10.1007/11780274_17

    Chapter  Google Scholar 

  23. Tarlecki, A., Burstall, R.M., Goguen, J.A.: Some fundamental algebraic tools for the semantics of computation: Part 3: indexed categories. Theor. Comput. Sci. 91(2), 239–264 (1991)

    Article  MATH  Google Scholar 

  24. Williamson, K.E., Healy, M., Barker, R.A.: Industrial applications of software synthesis via category theory-case studies using specware. Autom. Softw. Eng. 8(1), 7–30 (2001)

    Article  MATH  Google Scholar 

  25. Zimmermann, A., Krötzsch, M., Euzenat, J., Hitzler, P.: Formalizing ontology alignment and its operations with category theory. In: Proceedings of FOIS-2006, pp. 277–288 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Till Mossakowski , Florian Rabe or Mihai Codescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mossakowski, T., Rabe, F., Codescu, M. (2017). Canonical Selection of Colimits. In: James, P., Roggenbach, M. (eds) Recent Trends in Algebraic Development Techniques. WADT 2016. Lecture Notes in Computer Science(), vol 10644. Springer, Cham. https://doi.org/10.1007/978-3-319-72044-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72044-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72043-2

  • Online ISBN: 978-3-319-72044-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics