Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Iterative Receiver with Gaussian and Mean-Field Approximation in Massive MIMO Systems

  • Conference paper
  • First Online:
5G for Future Wireless Networks (5GWN 2017)

Abstract

In this paper, a computationally efficient message-passing receiver that performs joint channel estimation and decoding is proposed for massive multiple-input multiple-output (MIMO) systems with OFDM modulation. We combine the loopy belief propagation (LBP) with the mean-field approximation and Gaussian approximation to decouple frequency-domain channel taps and data symbols from noisy observations. Specifically, pair-wise joint belief of frequency-domain channel tap and symbol is obtained by soft interference cancellation, after which the marginal belief of frequency-domain channel tap and symbol are estimated from the pair-wise joint belief by the mean-field approximation. To estimate time-domain channel taps between each pair of antennas, a Gaussian message passing based estimator is applied. The whole scheme of joint channel estimation and decoding is assessed by Monte Carlo simulations, and the numerical results corroborate the superior performance of the proposed scheme and its superiority to the state of art.

This work was supported by the National Nature Science Foundation of China (Grant No. 91438206 and Grant No. 91638205).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For the sake of efficient implementation, we consider to update all the beliefs concurrently in this paper.

References

  1. Marzetta, T.L.: Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 9(11), 3590–3600 (2010)

    Article  Google Scholar 

  2. Wang, S., Li, Y., Zhao, M., Wang, J.: Energy efficient and low-complexity uplink transceiver for massive spatial modulation MIMO. IEEE Trans. Veh. Technol. PP(99), 1–1 (2014)

    Google Scholar 

  3. Wu, S., Kuang, L., Ni, Z., Lu, J., (David) Huang, D., Guo, Q.: Expectation propagation based iterative groupwise detection for large-scale multiuser MIMO-OFDM systems. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), pages 248–253, April 2014

    Google Scholar 

  4. Wang, S., Li, Y., Wang, J.: Multiuser detection in massive spatial modulation MIMO with low-resolution ADCs. IEEE Trans. Wirel. Commun. 14(4), 2156–2168 (2015)

    Article  Google Scholar 

  5. Liu, L., Yuen, C., Guan, Y.L., Li, Y., Su, Y.: A low-complexity Gaussian message passing iterative detector for massive MU-MIMO systems. In: 2015 10th International Conference on Information, Communications and Signal Processing (ICICS), pp. 1–5, December 2015

    Google Scholar 

  6. Liu, L., Yuen, C., Guan, Y.L., Li, Y., Su, Y.: Convergence analysis and assurance for Gaussian message passing iterative detector in massive MU-MIMO systems. IEEE Trans. Wirel. Commun. 15(9), 6487–6501 (2016)

    Article  Google Scholar 

  7. Dai, L., Wang, Z., Yang, Z.: Spectrally efficient time-frequency training OFDM for mobile large-scale MIMO systems. IEEE J. Sel. Areas Commun. 3(2), 251–263 (2013)

    Article  Google Scholar 

  8. Rossi, P.S., Müller, R.R.: Joint twofold-iterative channel estimation and multiuser detection for MIMO-OFDM systems. IEEE Trans. Wirel. Commun. 7(11), 4719–4729 (2008)

    Article  Google Scholar 

  9. Novak, C., Matz, G., Hlawatsch, F.: IDMA for the multiuser MIMO-OFDM uplink: a factor graph framework for joint data detection and channel estimation. IEEE Trans. Sig. Process. 61(16), 4051–4066 (2013)

    Article  MathSciNet  Google Scholar 

  10. Wu, S., Ni, Z., Meng, X., Kuang, L.: Block expectation propagation for downlink channel estimation in massive MIMO systems. IEEE Commun. Lett. 20(11), 2225–2228 (2016)

    Article  Google Scholar 

  11. Lin, X., Wu, S., Kuang, L., Ni, Z., Meng, X., Jiang, C.: Estimation of sparse massive MIMO-OFDM channels with approximately common support. IEEE Commun. Lett. PP(99), 1 (2017)

    Google Scholar 

  12. Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theor. 47(2), 498–519 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Worthen, A.P., Stark, W.E.: Unified design of iterative receivers using factor graphs. IEEE Trans. Inf. Theor. 47(2), 843–849 (2001)

    Article  Google Scholar 

  14. Liu, Y., Brunel, L., Boutros, J.J.: Joint channel estimation and decoding using Gaussian approximation in a factor graph over multipath channel. In: Proceedings of the International Symposium on Personal, Indoor and Mobile Radio Communication (PIMRC), pp. 3164–3168 (2009)

    Google Scholar 

  15. Kirkelund, G.E., Manchón, C.N., Christensen, L.P.B., Riegler, E., Fleury, B.H.: Variational message-passing for joint channel estimation and decoding in MIMO-OFDM. In: Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), pp. 1–6 (2010)

    Google Scholar 

  16. Guo, Q., (David) Huang, D.: EM-based joint channel estimation and detection for frequency selective channels using Gaussian message passing. IEEE Trans. Sig. Process. 59(8), 4030–4035 (2011)

    Article  MathSciNet  Google Scholar 

  17. Schniter, P.: A message-passing receiver for BICM-OFDM over unknown clustered-sparse channels. IEEE J. Sel. Top. Sig. Process. 5(8), 1462–1474 (2011)

    Article  Google Scholar 

  18. Knievel, C., Hoeher, P.A., Tyrrell, A., Auer, G.: Multi-dimensional graph-based soft iterative receiver for MIMO-OFDM. IEEE Trans. Commun. 60(6), 1599–1609 (2012)

    Article  Google Scholar 

  19. Riegler, E., Kirkelund, G.E., Manchón, C.N., Badiu, M.-A., Fleury, B.H.: Merging belief propagation and the mean field approximation: a free energy approach. IEEE Trans. Inf. Theor. 59(1), 588–602 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wu, S., Kuang, L., Ni, Z., Lu, J., (David) Huang, D., Guo, Q.: Expectation propagation approach to joint channel estimation and decoding for OFDM systems. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 1941–1945, May 2014

    Google Scholar 

  21. Schniter, P.: Joint estimation and decoding for sparse channels via relaxed belief propagation. In: Proceedings of the 44th Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 1055–1059. IEEE (2010)

    Google Scholar 

  22. Manchón, C.N., Kirkelund, G.E., Riegler, E., Christensen, L.P.B., Fleury, B.H.: Receiver architectures for MIMO-OFDM based on a combined VMP-SP algorithm. arXiv:1111.5848 (2011)

  23. Badiu, M.-A., Kirkelund, G.E., Manchón, C.N., Riegler, E., Fleury, B.H.: Message-passing algorithms for channel estimation and decoding using approximate inference. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 2376–2380 (2012)

    Google Scholar 

  24. Drémeau, A., Herzet, C., Daudet, L.: Boltzmann machine and mean-field approximation for structured sparse decompositions. IEEE Trans. Sig. Process. 60(7), 3425–3438 (2012)

    Article  MathSciNet  Google Scholar 

  25. Krzakala, F., Manoel, A., Tramel, E.W., Zdeborová, L.: Variational free energies for compressed sensing. In: Proceedings of IEEE International Symposium on Information Theory (ISIT), pp. 1499–1503, June 2014

    Google Scholar 

  26. Badiu, M.-A., Manchón, C.N., Fleury, B.H.: Message-passing receiver architecture with reduced-complexity channel estimation. IEEE Commun. Lett. 17(7), 1404–1407 (2013)

    Article  Google Scholar 

  27. Yuan, Z., Zhang, C., Wang, Z., Guo, Q., Wu, S., Wang, X.: A low-complexity receiver using combined BP-MF for joint channel estimation and decoding in OFDM systems. CoRR, abs/1601.05856 (2016)

    Google Scholar 

  28. Wu, S., Kuang, L., Ni, Z., Lu, J., (David) Huang, D., Guo, Q.: Low-complexity iterative detection for large-scale multiuser MIMO-OFDM systems using approximate message passing. IEEE J. Sel. Top. Sig. Process. 8(5), 902–915 (2014)

    Article  Google Scholar 

  29. Meng, X., Wu, S., Kuang, L., Ni, Z., Lu, J.: Expectation propagation based iterative multi-user detection for MIMO-IDMA systems. In: 2014 IEEE 79th Vehicular Technology Conference (VTC Spring), pp. 1–5, May 2014

    Google Scholar 

  30. Meng, X., Wu, S., Kuang, L., Lu, J.: An expectation propagation perspective on approximate message passing. IEEE Sig. Process. Lett. 22(8), 1194–1197 (2015)

    Article  Google Scholar 

  31. Minka, T.P.: Divergence measures and message passing. Technical report MSR-TR-2005-173, Microsoft Research Ltd., Cambridge, UK, December 2005

    Google Scholar 

  32. Wu, S., Kuang, L., Ni, Z., Huang, D., Guo, Q., Lu, J.: Message-passing receiver for joint channel estimation and decoding in 3D massive MIMO-OFDM systems. IEEE Trans. Wirel. Commun. 15(12), 8122–8138 (2016)

    Article  Google Scholar 

  33. Hochwald, B.M., ten Brink, S.: Achieving near-capacity on a multiple-antenna channel. IEEE Trans. Commun. 51(3), 389–399 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linling Kuang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, S., Kuang, L., Lin, X., Sun, B. (2018). Iterative Receiver with Gaussian and Mean-Field Approximation in Massive MIMO Systems. In: Long, K., Leung, V., Zhang, H., Feng, Z., Li, Y., Zhang, Z. (eds) 5G for Future Wireless Networks. 5GWN 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-72823-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72823-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72822-3

  • Online ISBN: 978-3-319-72823-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics