Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Modeling and Simulation on Cooperative Movement of Vehicle Group Based on the Behavior of Fish

  • Conference paper
  • First Online:
5G for Future Wireless Networks (5GWN 2017)

Abstract

Fatigue driving might affect the traffic safety when the vehicles are on the cruising state in highway. Trying to solve this problem, this paper uses the movement pattern of the fish to the vehicles fleet, and develops a model of vehicle group with realistic restrictions based on the existed fish algorithms, the mobile behavioral model and cluster behavior model, and then demonstrates the feasibility of applying the fish behavior to the cooperative movement of vehicle groups through analyzing the trajectory, velocity and spacing of vehicles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, G., Guo, D.: Research and development on internet of vehicle. J. Mob. Commun. 17, 23–26 (2011)

    Google Scholar 

  2. Gaamel, A.M., Maratha, B.P., Sheltami, T.R., Shakshuki, E.M.: Fault-tolerance evaluation of VANET under different data dissemination models. Int. J. Veh. Telemat. Infotain. Syst. (IJVTIS) 1(1), 54–68 (2017)

    Google Scholar 

  3. Mir, Z.H., Filali, F.: A simulation-based study on the environment-specific propagation model for vehicular communications. Int. J. Veh. Telemat. Infotain. Syst. (IJVTIS) 1(1), 1–18 (2017)

    Google Scholar 

  4. Cortéspolo, D., Callecancho, J., Carmonamurillo, J., Gonzálezsánchez, J.: Future trends in mobile-fixed integration for next generation networks: classification and analysis. Int. J. Veh. Telemat. Infotain. Syst. (IJVTIS) 1(1), 33–53 (2017)

    Google Scholar 

  5. Zhang, H., Liu, N., Chu, X., Long, K., Aghvami, A.H., Leung, V.C.M.: Network slicing based 5G and future mobile networks: mobility, resource management, and challenges. IEEE Commun. Mag.

    Google Scholar 

  6. Zhang, H., Dong, Y., Cheng, J., Leung, V.C.M.: Fronthauling for 5G LTE-U ultra dense cloud small cell networks. IEEE Wirel. Commun. 23(6), 48–53 (2016)

    Article  Google Scholar 

  7. Chen, S., Zhao, J.: The requirements, challenges and technologies for 5G of terrestrial mobile telecommunication. IEEE Commun. Mag. 52(5), 36–43 (2014)

    Article  Google Scholar 

  8. Chen, S., Hu, J., Shi, Y., Zhao, L.: LTE-V: a TD-LTE based V2X solution for future vehicular network. IEEE Internet Things J. 3(6), 997–1005 (2016)

    Article  Google Scholar 

  9. Zheng, Q., Zheng, K., Zhang, H., Leung, V.C.M.: Delay-optimal virtualized radio resource scheduling in software-defined vehicular networks via stochastic learning. IEEE Trans. Veh. Technol. 65(12), 9479–9492 (2016)

    Article  Google Scholar 

  10. Jiang, C., Zhang, H., Han, Z., Cheng, J., Ren, Y., Leung, V.C.M., Hanzo, L.: Information-sharing outage-probability analysis of vehicular networks. IEEE Trans. Veh. Technol. 65(12), 9479–9492 (2016)

    Article  Google Scholar 

  11. Jiang, C., Zhang, H., Han, Z., Cheng, J., Ren, Y., Hanzo, L.: On the outage probability of information sharing in cognitive vehicular networks. In: Proceedings of IEEE International Conference on Communications (ICC), Kuala Lampur, Malaysia, 23–27 May 2016

    Google Scholar 

  12. Huang, Y., Wang, J., Jiang, C., Zhang, H., Leung, V.C.M.: Vehicular network based reliable traffic density estimation. In: Proceedings of the IEEE Vehicular Technology Conference (VTC), Nanjing, 15–18 May 2016

    Google Scholar 

  13. Pressas, A., Özpolat, M., Sheng, Z., Ali, F.: Performance evaluation of networking protocols for connected vehicles. Int. J. Veh. Telemat. Infotain. Syst. (IJVTIS) 1(1), 1–14 (2017)

    Google Scholar 

  14. Zhu, Y., Chen, H., Shen, H.: Bio-inspired Computing Individual, Swarm and Community Evolution Models and Methods, pp. 35–38. Tsinghua University Press, Beijing (2013)

    Google Scholar 

  15. Huth, A., Wissel, C.: The simulation of the movement in fish schools. J. Theor. Biol. 156, 365–385 (1992)

    Article  Google Scholar 

  16. Wang, J., Ren, Z.: Application if artificial fish algorithm in vehicle behavior under serious traffic incident. J. Syst. Simul. 23 (2011)

    Google Scholar 

  17. Jiang, S., Ji, Y.: Artificial fish swarm algorithm for solving road network equilibrium traffic assignment problem. Comput. Simul. 28(6), 326–329 (2011). ISSN 1006-9348

    Google Scholar 

  18. Lei, L., Shiru, Q.: An effective swarm vehicle coordinative traffic control design based on fish swarm grouping behavior. J. Northwestern Polytechn. Univ. 30 (2012)

    Google Scholar 

  19. Ban, X., Ning, S.: Research on advanced self-organization behavior for artificial fish school. Acta Automatica Sin. 34(10), 1328–1331 (2008)

    Google Scholar 

  20. Tang, A., Yip, A.: Collision avoidance timing analysis of DSRC-based vehicles. Accid. Anal. Prev. 42(1), 182–195 (2010)

    Article  Google Scholar 

  21. Chu, T.G., Wang, L., Mu, S.M.: Collective behavior analysis of an anisotropic swarm model. In: Proceedings of the 16th International Symposium on Mathematical Theory of Network and Systems. Mathematical Theory of Network and Systems (2004)

    Google Scholar 

  22. He, S., Xia, L.: Friction coefficient mesurement and evaluation for lane surface of expressway. J. Highway Transp. Res. Devel. 19 (2002)

    Google Scholar 

  23. Johansson, G., Rumar, K.: ‘Driver’s brake reaction times’, human factors. J. Hum. Factors Ergon. Soc. 13, 23–27 (1971)

    Article  Google Scholar 

  24. Taoka, G.: Break reaction times of unalerted drivers. ITE J. 59, 19–21 (1989)

    Google Scholar 

  25. Tian, D., Zhu, K.: Swarm model for cooperative multi-vehicle mobility with inter-vehicle communications. IET Intell. Transp. Syst. 9, 887–896 (2015)

    Article  Google Scholar 

  26. Yang, D., Pu, Y., Yang, F.: Car-following model based on optimal distance and its characteristics analysis. J. Northwest Transp. Univ. 47 (2012)

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by no. Beijing Science and Technology Program no. D171100000317003 and the National Natural Science Foundation of China under Grant nos. 61672082, U1564212.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daxin Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tian, D. et al. (2018). Modeling and Simulation on Cooperative Movement of Vehicle Group Based on the Behavior of Fish. In: Long, K., Leung, V., Zhang, H., Feng, Z., Li, Y., Zhang, Z. (eds) 5G for Future Wireless Networks. 5GWN 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-72823-0_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72823-0_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72822-3

  • Online ISBN: 978-3-319-72823-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics