Abstract
In this paper the spectral mimetic least-squares method is applied to a two-dimensional div-curl system. A test problem is solved on orthogonal and curvilinear meshes and both h- and p-convergence results are presented. The resulting solutions will be pointwise divergence-free for these test problems. For \(N>1\) optimal convergence rates on an orthogonal and a curvilinear mesh are observed. For \(N=1\) the method does not converge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bochev, P.B., Gerritsma, M.I.: A spectral mimetic least-squares method. Comput. Math. Appl. 68, 1480–1502 (2014)
Bochev, P.B., Gunzburger, M.D.: Least-Squares Finite Element Methods. Spinger, New York (2009). https://doi.org/10.1007/b13382
Bochev, P.B., Peterson, K., Siefert, C.: Analysis and computation of compatible least-squares methods for div-curl systems. SIAM J. Numer. Anal. 49(1), 159–181 (2011)
Boulmezaoud, T.Z., Kaliche, K., Kerdid, N.: Explicit div-curl inequalities in bounded and unbounded domains of \(\mathbb{R}^3\). Ann. Univ. Ferrara 63(2), 249–276 (2017). https://doi.org/10.1007/s11565-016-0266-7
Bramble, J.H., Pasciak, J.E.: A new approximation technique for div-curl systems. Math. Comput. 73(248), 1739–1762 (2004)
Gerritsma, M.: Edge functions for spectral element methods. In: Hesthaven, J., Rønquist, E. (eds.) Spectral and High Order Methods for Partial Differential Equations. LNCS, pp. 199–208. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-15337-2_17
Gerritsma, M., Bouman, M., Palha, A.: Least-squares spectral element method on a staggered grid. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 653–661. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12535-5_78
Jiang, B.-N.: The Least-Squares Finite Element Method. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-662-03740-9
Nicolaides, R.A.: Direct discretization of planar div-curl problems. SIAM J. Numer. Anal. 29(1), 32–56 (1992)
Nicolaides, R.A., Wang, D.-Q.: A higher-order covolume method for planar div-curl problems. Int. J. Numer. Meth. Fluid 31, 299–308 (1999)
Nicolaides, R.A., Wu, X.: Covolume solutions of three-dimensional div-curl equations. SIAM J. Numer. Aanl. 34(6), 2195–2203 (1997)
Palha, A., Gerritsma, M.: Mimetic least-squares spectral/hp finite element method for the poisson equation. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 662–670. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12535-5_79
Palha, A., Rebelo, P.P., Hiemstra, R., Kreeft, J., Gerritsma, M.I.: Physics-compatible discretization techniques on single and dual grids, with application to the Poisson equation of volume forms. J. Comput. Phys. 257, 1394–1422 (2014)
Palha, A., Gerritsma, M.I.: Spectral mimetic least-squares method for curl-curl problems. In: Lirkov, I., Margenov, S. (eds.) LSSC 2017. LNCS, vol. 10665, pp. 119–127. Springer, Cham (2017)
Acknowledgements
The authors want to thank the reviewers for the valuable feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
A Weighted Sobolev Spaces
Weighted Sobolev spaces are discussed in [2, Appendix A]. The space \(H_0(\nabla \times ,\varvec{\varTheta }_1,\varOmega )\) is the Hilbert space of vector-valued functions
where
and associated norm
The space \(H(\nabla \cdot , \varOmega ,\varvec{\varTheta }_1^{-1})\) is defined by
If \(\varvec{u} \in L^2(\varvec{\varTheta },\varOmega )]^d\), then \(\varvec{\varTheta } \varvec{u} \in L^2(\varvec{\varTheta }^{-1},\varOmega )]^d\), therefore the second equation in (2) therefore equates two functions in \(L^2(\varOmega ,\varvec{\varTheta }_1^{-1})]^d\).
Weighted Sobolev spaces incorporate material parameters in the functional setting, thus allowing for inhomogeneous and anisotropic relations, see for example Remark A.4 in [2, p.542]. If a description in curvilinear coordinates is obtained from a mapping as described in Sect. 4 then the weight functions naturally arise as a consequence of the pullbacks of those maps.
B Three-Dimensional Double DeRham Complex
In (4) the two-dimensional DeRham complex is given. For \(d=3\) the double DeRham setting is given by

Although the current paper focused on the two-dimensional div-curl system, the three dimensional analogue of (1) is much more challenging, because it constitutes a system of 4 partial differential equations for 3 unknown vector components of \(\varvec{u}\), [11].
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Gerritsma, M., Palha, A. (2018). Spectral Mimetic Least-Squares Method for Div-curl Systems. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science(), vol 10665. Springer, Cham. https://doi.org/10.1007/978-3-319-73441-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-73441-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73440-8
Online ISBN: 978-3-319-73441-5
eBook Packages: Computer ScienceComputer Science (R0)