Abstract
InterCriteria Analysis is a recently developed approach for the evaluation of the correlation between multiple objects against multiple criteria. As such, it is expected to prove any existing correlations between the criteria themselves or even to discover any new. In this investigation different algorithms for InterCriteria relations calculation are explored to render the influence of the genetic algorithm (GA) parameters on the algorithm performance. GA is chosen as an optimization technique as they are among the most widely used out of the biologically inspired approaches for global search. GA is here applied to parameter identification of a S. cerevisiae fed-batch fermentation process model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Atanassov, K.T.: Index Matrices: Towards an Augmented Matrix Calculus. SCI, vol. 573. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10945-9
Atanassov, K.: Intuitionistic fuzzy sets, VII ITKR Session, Sofia (1983). Reprinted: Int. J. Bioautom. 20(S1), S1–S6 (2016)
Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-29127-2
Atanassov, K., Mavrov, D., Atanassova, V.: InterCriteria decision making: a new approach for multicriteria decision making, based on index matrices and intuitionistic fuzzy sets. Issues IFSs GNs 11, 1–8 (2014)
Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wiley Publishing Company, Massachusetts (1989)
Krawczak, M., Bureva, V., Sotirova, E., Szmidt, E.: Application of the intercriteria decision making method to universities ranking. In: Atanassov, K.T., et al. (eds.) Novel Developments in Uncertainty Representation and Processing. AISC, vol. 401, pp. 365–372. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26211-6_31
Pencheva, T., Angelova, M.: InterCriteria analysis of simple genetic algorithms performance. In: Georgiev, K., Todorov, M., Georgiev, I. (eds.) Advanced Computing in Industrial Mathematics. SCI, vol. 681, pp. 147–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49544-6_13
Pencheva, T., Angelova, M., Vassilev, P., Roeva, O.: InterCriteria analysis approach to parameter identification of a fermentation process model. In: Atanassov, K.T., et al. (eds.) Novel Developments in Uncertainty Representation and Processing. AISC, vol. 401, pp. 385–397. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26211-6_33
Pencheva, T., Roeva, O., Hristozov, I.: Functional State Approach to Fermentation Processes Modelling. Prof. Marin Drinov Academic Publishing House, Sofia (2006)
Roeva, O., Vassilev, P., Angelova, M., Su, J., Pencheva, T.: Comparison of different algorithms for InterCriteria relations calculation. In: Proceedings of the 8th International Conference on Intelligent Systems, pp. 567–572 (2016)
Roeva, O., Vassilev, P., Fidanova, S., Paprzycki, M.: InterCriteria analysis of genetic algorithms performance. In: Fidanova, S. (ed.) Recent Advances in Computational Optimization. SCI, vol. 655, pp. 235–260. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40132-4_14
Todinova, S., Mavrov, D., Krumova, S., Marinov, P., Atanassova, V., Atanassov, K., Taneva, S.G.: Blood plasma thermograms dataset analysis by means of intercriteria and correlation analyses for the case of colorectal cancer. Int. J. Bioautom. 20(1), 115–124 (2016)
Acknowledgements
This work is partially supported by the National Science Fund of Bulgaria under the Grants DFNI-I-02-5 “InterCriteria Analysis – A New Approach to Decision Making” and DM-07/1 “Development of New Modified and Hybrid Metaheuristic Algorithms”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Pencheva, T., Roeva, O., Angelova, M. (2018). Investigation of Genetic Algorithm Performance Based on Different Algorithms for InterCriteria Relations Calculation. In: Lirkov, I., Margenov, S. (eds) Large-Scale Scientific Computing. LSSC 2017. Lecture Notes in Computer Science(), vol 10665. Springer, Cham. https://doi.org/10.1007/978-3-319-73441-5_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-73441-5_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73440-8
Online ISBN: 978-3-319-73441-5
eBook Packages: Computer ScienceComputer Science (R0)