Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Parametric Sparse Recovery and SFMFT Based M-D Parameter Estimation with the Translational Component

  • Conference paper
  • First Online:
Machine Learning and Intelligent Communications (MLICOM 2017)

Abstract

The micro-Doppler effect (m-D effect) provides unique signatures for target discrimination and recognition. In this paper, we consider a solution to the m-D parameter estimation. This method mainly consists of two procedures, with the first being the radar returns decomposition to extract the m-D components in Bessel domain. Then the parameter estimation issue is transformed as a parametric sparse recovery solution. A parametric sparse dictionary, which depends on m-D frequencies, is constructed according to the inherent property of the m-D returns. Considering that the m-D frequency is unknown, the discretizing m-D frequency range for the parametric dictionary matrix is calculated by the sinusoidal frequency modulated Fourier transform (SFMFT). In this manner, the finer m-D frequency, initial phases, maximum Doppler amplitudes and scattering coefficients are obtained by solving the sparse solution of the m-D returns. The simulation results verify the effectiveness.

This work was supported by the National Natural Science Foundation of China under Grant 61631019 and 61471386.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, D.C.: An overview of micro-doppler radar. J. CAEIT 7(6), 575–580 (2012). (in Chinese)

    Google Scholar 

  2. Ruegg, M., Meier, E., Nuesch, D.: Vibration and rotation in millimeter-wave SAR. IEEE Trans. Geosci. Remote Sens. 45(2), 293–304 (2007)

    Article  Google Scholar 

  3. Liu, Z., Wei, X.Z., Li, X.: Aliasing-free micro-doppler analysis based on short-time compressed sensing. IET Sig. Process. 8(2), 176–187 (2014)

    Article  Google Scholar 

  4. Suresh, P., Thayaparan, T., Obulesu, T., Venkataramaniah, K.: Extracting micro-doppler radar signatures from rotating targets using fourier-bessel transform and time-frequency analysis. IEEE Trans. Geosci. Remote Sens. 52(6), 3204–3210 (2014)

    Article  Google Scholar 

  5. He, Q.F., Wang, J.D., Wang, K., Wu, Y.G., Zhang, Q.: Multi-component LFM signals detection and separation using fourier-bessel series expansion. In: RADAR 2016 Conference, Guangzhou, pp. 1749–1753. IEEE Press (2016)

    Google Scholar 

  6. Peng, B., Wei, X.Z., Deng, B., Chen, H.W., Liu, Z., Li, X.: A sinusoidal frequency modulation fourier transform for radar-based vehicle vibration estimation. IEEE Trans. Instrument. Measure. 63(9), 2188–2199 (2014)

    Article  Google Scholar 

  7. Luo, Y., Zhang, Q., Wang, G.Z., Guan, H., Bai, Y.Q.: Micro-motion signature extraction method for wideband radar based on complex image OMP decomposition. J. Radars. 1(4), 361–369 (2012). (in Chinese)

    Article  Google Scholar 

  8. Orovic, I., Stankovic, S., Thayaparan, T.: Time-frequency-based instantaneous frequency estimation of sparse signals from incomplete set of samples. IET Sig. Process. 8(3), 239–245 (2014)

    Article  Google Scholar 

  9. Stankovic, L., Orovic, I., Stankovic, S., Amin, M.: Compressive sensing based separation of nonstationary and stationary signals overlapping in time-frequency. IEEE Trans. Sig. Process. 61(18), 4562–4572 (2013)

    Article  MathSciNet  Google Scholar 

  10. Flandrin, P., Borgnat, P.: Time-frequency energy distributions meet compressed sensing. IEEE Trans. Sig. Process. 58(6), 2974–2982 (2010)

    Article  MathSciNet  Google Scholar 

  11. Chen, X.L., Dong, Y.L., Huang, Y., Guan J.: Detection of marine target with quadratic modulated frequency micromotion signature via morphological component analysis. In: 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing, Pisa, Italy, pp. 220–224 (2015)

    Google Scholar 

  12. Stankovic, S., Orovic, I., Pejakovic, T., Orovic, M.: Compressive sensing reconstruction of signals with sinusoidal phase modulation: application to radar micro-doppler. In: 22nd Telecommunications forum TELFOR, Belgrade, pp. 565–568 (2014)

    Google Scholar 

  13. Orovic, I., Stankovic, S., Amin, M.: Compressive sensing for sparse time-frequency representation of nonstationary signals in the presence of impulsive noise. In: Proceedings of SPIE, vol. 8717, United States (2013)

    Google Scholar 

  14. Li, G., Varshney, P.K.: Micro-doppler parameter estimation via parametric sparse representation and pruned orthogonal matching pursuit. IEEE J. Sel. Topic. Appl. Earth Obs. Remote Sens. 7(12), 4937–4948 (2014)

    Article  Google Scholar 

  15. Xia, P., Wan, X.R., Yi, J.X.: Micromotion parameters estimation for rotating structures on target in passive radar. Chin. J Radio Sci. 31(4), 676–682 (2016)

    Google Scholar 

  16. Hasar, U.C., Barroso, J.J., Sabah, C., Kaya, Y.: Resolving phase ambiguity in the inverse problem of reflection-only measurement methods. Progr. Electromagn. Res. 129, 405–420 (2012)

    Article  Google Scholar 

  17. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-fang He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, Qf., Xu, Hy., Zhang, Q., Chen, Yj. (2018). Parametric Sparse Recovery and SFMFT Based M-D Parameter Estimation with the Translational Component. In: Gu, X., Liu, G., Li, B. (eds) Machine Learning and Intelligent Communications. MLICOM 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-73447-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73447-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73446-0

  • Online ISBN: 978-3-319-73447-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics