Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Novel Parameter Determination Method for Lq Regularization Based Sparse SAR Imaging

  • Conference paper
  • First Online:
Machine Learning and Intelligent Communications (MLICOM 2017)

Abstract

Sparse SAR imaging based on Lq(0 < q < 1) regularization has become a hot issue in SAR imaging. However, it can be difficult to determine a suitable value of the regularization parameter. In this paper, we developed a novel adaptive regularization parameter determination method for Lq regularization based SAR imaging. On the basis that the noise type in SAR system is mostly additive Gaussian white noise, we present a method for determining the regularization parameter through evaluating the statistics of noise. The parameter is updated through validating the statistical properties of the reconstruction error residuals in a suitable Noise Confidence Region (NCR). The experiment results illustrate the validity of the proposed method.

The authors would like to express thanks for the support of the Aeronautical Science Foundation (Grant No. 20151996016) and Coordinate Innovative Engineering Project of Shaanxi Province (Grant No. 2015KTTSGY0406).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zeng, J., Fang, J., Xu, Z.: Sparse SAR imaging based on L1/2 regularization. Sci. China Inf. Sci. 55, 1755–1775 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Logan, C.L.: An estimation-theoretic technique for motion-compensated synthetic-aperture array imaging. Ph.D. dissertation, Massachusetts Institute of Technology, Cambridge (2000)

    Google Scholar 

  3. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 30(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Xu, Z.B., Zhang, H., Wang, Y., et al.: L1/2 regularizer. Sci. China Inf. Sci. 53, 1159–1169 (2010)

    Article  MathSciNet  Google Scholar 

  6. Hashemi, S., Beheshti, S., Cobbold, S.C., et al.: Adaptive updating of regularization parameters. Sig. Process 113, 228–233 (2015)

    Article  Google Scholar 

  7. Vainikko, G.M.: The discrepancy principle for a class of regularization methods. USSR Comput. Math. Math. Phys. 22(3), 1–19 (1982)

    Article  MATH  Google Scholar 

  8. Hansen, P.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34(4), 561–580 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Samadi, S., Çetin, M., Masnadi-Shirazi, M.A.: Sparse representation based SAR imaging. IET Radar Sonar Navig. 5(2), 182–193 (2011)

    Article  Google Scholar 

  10. Beheshti, S., Hashemi, M., Zhang, X., Nikvand, N.: Noise invalidation denoising. IEEE Trans. Sig. Process. 58(12), 6007–6016 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-cheng Ni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ni, Jc., Zhang, Q., Sun, L., Liang, Xj. (2018). A Novel Parameter Determination Method for Lq Regularization Based Sparse SAR Imaging. In: Gu, X., Liu, G., Li, B. (eds) Machine Learning and Intelligent Communications. MLICOM 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-319-73447-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73447-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73446-0

  • Online ISBN: 978-3-319-73447-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics