Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Non-line-of-Sight Localization Method Based on the Algorithm Residual Error Minimization

  • Conference paper
  • First Online:
Machine Learning and Intelligent Communications (MLICOM 2017)

Abstract

Wireless localization has become a key technology location based services, and the non-line-of-sight (NLOS) propagation is one of the most important error source in the localization. Therefore, this paper defines a novel algorithm residual error (ARE) in NOLS environment, and estimates the position of mobile station (MS) by minimizing this ARE, where the quadratic programming is employed to solve the minimization problem. The simulation results show that the proposed algorithm produces significant performance improvements in NLOS environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. FCC Docket No. 94-102, Revision of Commission’s Rules to Ensure Compatibility with Enhanced 911 Emergency Calling System. RM-8143, 26 July 1996

    Google Scholar 

  2. Sayed, A.H., Taright, A., Kgajehnouri, N.: Network-based wireless location. IEEE Signal Process. Mag. 22(4), 24–40 (2005)

    Article  Google Scholar 

  3. Gustafsson, F., Gunnarsson, F.: Mobile positioning using wireless networks: possibilities and fundamental limitations based on available wireless network measurements. IEEE Signal Process. Mag. 22(42), 41–53 (2005)

    Article  Google Scholar 

  4. Hui, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37(6), 1067–1080 (2007)

    Article  Google Scholar 

  5. Patwari, N., Ash, J.N., Kyperountas, S., Hero, A.O., Moses, R.L., Correal, N.S.: Locating the nodes: cooperative localization in wireless sensor networks. IEEE Signal Process. Mag. 22(4), 54–69 (2005)

    Article  Google Scholar 

  6. Fang, B.T.: Simple solutions for hyperbolic and related fixes. IEEE Trans. Aerosp. Electron. Syst. 26(5), 748–753 (1990)

    Article  Google Scholar 

  7. Chan, Y.T., Ho, K.C.: K. C. HO. A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process. 42(8), 1905–1915 (1994)

    Article  Google Scholar 

  8. Foy, W.H.: Position-location solutions by Taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst. 12(3), 187–194 (1976)

    Article  Google Scholar 

  9. Friedlander, B.: A passive location algorithm and its accuracy analysis. IEEE J. Ocean. Eng. 12(1), 234–244 (1987)

    Article  MathSciNet  Google Scholar 

  10. Schau, H.C.: Passive source location employing intersecting spherical surfaces from time of arrival different. IEEE Trans. Acoust. Speech Signal Process. 25(8), 1223–1225 (1987)

    Article  Google Scholar 

  11. Al-Jazzar, S., Caffery, J.J., You, H.R.: A scattering model based approach to NLOS mitigation in TOA location systems. In: Proceedings of the 2002 IEEE Vehicular Technology Conference, Birmingham, UK, pp. 861–865. IEEE (2002)

    Google Scholar 

  12. Al-Jazzar, S., Caffery, J.J.: ML and Bayesian TOA location estimators for NLOS environments. In: Proceedings of the 2002 IEEE Vehicular Technology Conference, Birmingham, UK, pp. 856–860. IEEE (2002)

    Google Scholar 

  13. Guvenc, I., Chong, C.C., Wantanable, F., Inamura, H.: NLOS identification and weighted least squares localization for UWB systems using multipath channel statistics. EURASIP J. Adv. Signal Process. 36(1), 1–14 (2008)

    MATH  Google Scholar 

  14. Cong, L., Zhuang, W.H.: Non-line-of-sight error mitigation in mobile location. IEEE Trans. Wirel. Commun. 4(2), 560–573 (2004)

    Article  Google Scholar 

  15. Venkatraman, S., Caffery, J.J., You, H.R.: A novel TOA location algorithm using LOS range estimation for NLOS environments. IEEE Trans. Veh. Technol. 53(5), 515–1524 (2004)

    Article  Google Scholar 

  16. Khajehnouri, N., Sayed, A.H.: A non-line-of-sight equalization scheme for wireless cellular location. In: Proceedings of the 2003 IEEE International Conference on Acoustics, Speech and Signal Processing, Hongkong, pp. 549–552. IEEE (2003)

    Google Scholar 

  17. Chen, P.P.: A non-line-of-sight error mitigation algorithm in location estimation. In: Proceedings of the 1999 IEEE Wireless Communications and Networking Conference, New Orleans, LA, USA, pp. 316–320. IEEE (1999)

    Google Scholar 

  18. Gong, C., Wang, Z.L.: Optimizing Computation Using Matlab, 3rd edn. Publishing House of Electronics Industry, Beijing (2014)

    Google Scholar 

  19. Chan, Y.T., Tsui, W.Y., So, H.C., Ching, P.C.: Time-of-arrival based localization under NLOS conditions. IEEE Trans. Veh. Technol. 55(1), 17–24 (2006)

    Article  Google Scholar 

  20. Wang, X., Wang, Z., Odea, B.: TOA-based location algorithm reducing the errors due to non-line-of-light propagation. IEEE Trans. Veh. Technol. 52(1), 112–116 (2003)

    Article  Google Scholar 

  21. Zheng, X., Hua, J., Jiang, B., Lu, W., Wen, H., Yu, X.: A novel NLOS mitigation and localization algorithm exploiting the optimization method. Chin. J. Sens. Actuators 2013(5), 722–727 (2013)

    Google Scholar 

Download references

Acknowledgement

This paper is sponsored by National Natural Science Foundation of China (Grant No. 61601409 and Grant No. 61471322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyu Hua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, S., Hua, J., Li, F., Chen, F., Li, J. (2018). A Non-line-of-Sight Localization Method Based on the Algorithm Residual Error Minimization. In: Gu, X., Liu, G., Li, B. (eds) Machine Learning and Intelligent Communications. MLICOM 2017. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-73564-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73564-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73563-4

  • Online ISBN: 978-3-319-73564-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics