Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Method of Weather Radar Echo Extrapolation Based on Convolutional Neural Networks

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10704))

Included in the following conference series:

  • 3806 Accesses

Abstract

Weather radar echo extrapolation techniques possess wide application prospects in short-term forecasting (i.e., nowcasting). Traditional methods of radar echo extrapolation have difficulty obtaining long limitation period data and lack the utilization rate of radar. To solve this problem, this paper proposes a method of weather radar echo extrapolation based on convolutional neural networks (CNNs). To create a strong correlation among contiguous weather radar echo images from traditional CNNs, this method present a new CNN model: Recurrent Dynamic CNNs (RDCNN). RDCNN consists of a recurrent dynamic sub-network and a probability prediction layer, which constructs a cyclic structure in the convolution layer, improving the ability of RDCNN to process time-related images. Nanjing, Hangzhuo and Xiamen experimented with radar data, and compared with traditional methods, our method achieved higher accuracy of extrapolation and extended the limitation period effectively, meeting the requirements for application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Doviak, R.J.: Doppler Radar and Weather Observations. Courier Corporation, Chelmsford (1993)

    Google Scholar 

  2. Sun, J., Xue, M., Wilson, J.W., Zawadzki, I., et al.: Use of NWP for nowcasting convective precipitation: recent progress and challenges. Bull. Am. Meteorol. Soc. 95(3), 409–426 (2014)

    Article  Google Scholar 

  3. Reyniers, M.: Quantitative Precipitation Forecasts Based on Radar Observations: Principles, Algorithms and Operational Systems. Institut Royal Météorologique de Belgique, Uccle (2008)

    Google Scholar 

  4. Cheung, P., Yeung, H. Y.: Application of optical-flow technique to significant convection nowcast for terminal areas in Hong Kong. In: The 3rd WMO International Symposium on Nowcasting and Very Short-Range Forecasting, pp. 6–10 (2012)

    Google Scholar 

  5. Otsuka, S., Tuerhong, G., Kikuchi, R., et al.: Precipitation nowcasting with threedimensional space–time extrapolation of dense and frequent phased-array weather radar observations. Weather Forecast. 31(1), 329–340 (2016)

    Article  Google Scholar 

  6. Li, L., Schmid, W., Joss, J.: Nowcasting of motion and growth of precipitation with radar over a complex orography. J. Appl. Meteorol. 34(6), 1286–1300 (1995)

    Article  Google Scholar 

  7. Zhang, Y., Cheng, M., Xia, W., et al.: Estimation of weather radar echo motion field and its application to precipitation nowcasting. Acta Meteorol. Sin. 64(5), 631–646 (2006)

    Google Scholar 

  8. Xingjian, S.H.I., Chen, Z., Wang, H., et al.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  9. Singh, S., Sarkar, S., Mitra, P.: Leveraging convolutions in recurrent neural networks for doppler weather radar echo prediction. In: Cong, F., Leung, A., Wei, Q. (eds.) ISNN 2017. LNCS, vol. 10262, pp. 310–317. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59081-3_37

    Chapter  Google Scholar 

  10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  13. Sermanet, P., Eigen, D., Zhang, X., et al.: OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229, arXiv preprint (2013)

  14. Szegedy, C., Liu, W., Jia, Y., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  15. Taigman, Y., Yang, M., Ranzato, M. A., et al.: DeepFace: closing the gap to human-level performance in face verification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

    Google Scholar 

  16. Yang, W., Jin, L., Tao, D., et al.: DropSample: a new training method to enhance deep convolutional neural networks for large-scale unconstrained handwritten Chinese character recognition. Pattern Recogn. 58(1), 190–203 (2016)

    Article  Google Scholar 

  17. Huang, F.J., LeCun, Y.: Large-scale learning with SVM and convolutional for generic object categorization. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 284–291 (2006)

    Google Scholar 

  18. Mikolov, T., Karafiát, M., Burget, L., et al.: Recurrent neural network based language model. In: Interspeech, vol. 2, p. 3 (2010)

    Google Scholar 

  19. Vinyals, O., Ravuri, S.V., Povey, D.: Revisiting recurrent neural networks for robust ASR. In: IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), pp. 4085–4088 (2012)

    Google Scholar 

  20. Sutskever, I., Martens, J., Hinton, G. E.: Generating text with recurrent neural networks. In: Proceedings of the 28th International Conference on Machine Learning (ICML-2011), pp. 1017–1024 (2011)

    Google Scholar 

  21. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  22. Uijlenhoet, R.: Raindrop size distribution and radar reflectivity-rain rate relationships for radar hydrology. Hydrol. Earth Syst. Sci. 5(4), 615–627 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qian Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, E., Li, Q., Gu, D., Zhao, Z. (2018). A Method of Weather Radar Echo Extrapolation Based on Convolutional Neural Networks. In: Schoeffmann, K., et al. MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science(), vol 10704. Springer, Cham. https://doi.org/10.1007/978-3-319-73603-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73603-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73602-0

  • Online ISBN: 978-3-319-73603-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics