Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Collision-Free LSTM for Human Trajectory Prediction

  • Conference paper
  • First Online:
MultiMedia Modeling (MMM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10704))

Included in the following conference series:

Abstract

Pedestrians have an intuitive ability for navigation to avoid obstacles and nearby pedestrians. If we want to predict future positions of a pedestrian, we should know how the pedestrian adjust his direction to avoid collisions. In this work, we present a simple and effective framework for human trajectory prediction to generate the future sequence based on pedestrian past positions. The method, called Collision-Free LSTM, extends the classical LSTM by adding Repulsion pooling layer to share hidden-states of neighboring pedestrians. The model can learn both the temporal information of trajectories and the interactions between pedestrians, which is in contrast to traditional methods using hand-crafted features such as Social forces. The experiments results on two public datasets show that our model can achieve state-of-the-art performance with assessment metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory pattern mining. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 330–339. ACM (2007)

    Google Scholar 

  2. Lee, J.G., Han, J., Whang, K.Y.: Trajectory clustering: a partition-and-group framework. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, pp. 593–604. ACM (2007)

    Google Scholar 

  3. Morris, B., Trivedi, M.: Learning trajectory patterns by clustering: experimental studies and comparative evaluation. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 312–319. IEEE (2009)

    Google Scholar 

  4. Ballan, L., Castaldo, F., Alahi, A., Palmieri, F., Savarese, S.: Knowledge transfer for scene-specific motion prediction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 697–713. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_42

    Chapter  Google Scholar 

  5. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)

    Article  Google Scholar 

  6. Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for reactive robotic response. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 14–29 (2016)

    Article  Google Scholar 

  7. Pellegrini, S., Ess, A., Van Gool, L.: Improving data association by joint modeling of pedestrian trajectories and groupings. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 452–465. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_33

    Chapter  Google Scholar 

  8. Choi, W., Savarese, S.: A unified framework for multi-target tracking and collective activity recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 215–230. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_16

    Chapter  Google Scholar 

  9. Choi, W., Savarese, S.: Understanding collective activities of people from videos. IEEE Trans. Pattern Anal. Mach. Intell. 36(6), 1242–1257 (2014)

    Article  Google Scholar 

  10. Leal-Taixe, L., Fenzi, M., Kuznetsova, A., Rosenhahn, B., Savarese, S.: Learning an image-based motion context for multiple people tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3542–3549 (2014)

    Google Scholar 

  11. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 935–942. IEEE (2009)

    Google Scholar 

  12. Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1345–1352. IEEE (2011)

    Google Scholar 

  13. Alahi, A., Ramanathan, V., Fei-Fei, L.: Socially-aware large-scale crowd fore-casting. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2203–2210 (2014)

    Google Scholar 

  14. Yi, S., Li, H., Wang, X.: Understanding pedestrian behaviors from stationary crowd groups. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3488–3496 (2015)

    Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Chung, J., Gulcehre, C., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555 (2014)

  17. Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)

    Google Scholar 

  18. Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 261–268. IEEE (2009)

    Google Scholar 

  19. Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: Computer-Graphics Forum, vol. 26, pp. 655–664. Wiley Online Library (2007)

    Google Scholar 

  20. Luber, M., Stork, J.A., Tipaldi, G.D., Arras, K.O.: People tracking with human motion predictions from social forces. In: 2010 IEEE International Conference on Robotics and Automation (ICRA), pp. 464–469. IEEE (2010)

    Google Scholar 

  21. Van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 1928–1935. IEEE (2008)

    Google Scholar 

  22. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998)

    Article  Google Scholar 

  23. Tordeux, A., Chraibi, M., Seyfried, A.: Collision-free speed model for pedestrian dynamics. In: Knoop, V., Daamen, W. (eds.) Traffic and Granular Flow 2015, pp. 225–232. Springer, Cham (2016)

    Google Scholar 

  24. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML 2010), pp. 807–814 (2010)

    Google Scholar 

  25. Dauphin, Y., de Vries, H., Bengio, Y.: Equilibrated adaptive learning rates for non-convex optimization. In: Advances in Neural Information Processing Systems, pp. 1504–1512 (2015)

    Google Scholar 

  26. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Savannah, Georgia, USA (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Qin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, K., Qin, Z., Wang, G., Huang, K., Ye, S., Zhang, H. (2018). Collision-Free LSTM for Human Trajectory Prediction. In: Schoeffmann, K., et al. MultiMedia Modeling. MMM 2018. Lecture Notes in Computer Science(), vol 10704. Springer, Cham. https://doi.org/10.1007/978-3-319-73603-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73603-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73602-0

  • Online ISBN: 978-3-319-73603-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics