Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Composite Anomaly Detection Method for Identifying Network Element Hitches

  • Conference paper
  • First Online:
Human Centered Computing (HCC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10745))

Included in the following conference series:

Abstract

Based on time-series detection algorithm, this paper puts forward a new analysis method for identify Network Element (NE) hitches. Aiming at specific characteristics of the NE, this paper propose a model which consider seasonal timing characteristics and impact of current data from recent data. Considering of multi-dimensional characteristics of NE, a density-based discovery algorithm is introduced into the modeling process. Experiments on the actual data coming from operates demonstrate the effectiveness and accuracy of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breunig, M.: LOF: identifying density-based local outliers. ACM SIGMOD Rec. 29(2), 93–104 (2000)

    Article  Google Scholar 

  2. Kriegel, H.P., Schubert, E., Zimek, A.: LoOP:local outlier probabilities. In: ACM Conference on Information and Knowledge Management, CIKM 2009, Hong Kong, China, DBLP, pp. 1649–1652, November 2009

    Google Scholar 

  3. Lazarevic, A., Kumar, V.: Feature bagging for outlier detection. In: Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, pp. 157–166. ACM (2005)

    Google Scholar 

  4. Schubert, E., Wojdanowski, R., Zimek, A., et al.: On evaluation of outlier rankings and outlier scores. In: Proceedings of the 2012 SIAM International Conference on Data Mining, pp. 1047–1058 (2012)

    Google Scholar 

  5. Guan, H., Li, Q., Yan, Z., et al.: SLOF: identify density-based local outliers in big data. In: Web Information System and Application Conference, pp. 61–66. IEEE (2015)

    Google Scholar 

  6. Booth, E.G., Mount, J.F., Viers, J.H.: Hydrologic variability of the cosumnes river floodplain. San Francisco Estuary Watershed Sci. 4(2), 1–19 (2006)

    Article  Google Scholar 

  7. Domańska, J., Domański, A., Czachórski, T.: Fluid flow analysis of RED algorithm with modified weighted moving average. In: Dudin, A., Klimenok, V., Tsarenkov, G., Dudin, S. (eds.) BWWQT 2013. CCIS, vol. 356, pp. 50–58. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35980-4_7

    Chapter  Google Scholar 

  8. Glabadanidis, P.: Market timing with moving averages. Int. Rev. Finance 15(3), 387–425 (2015)

    Article  Google Scholar 

  9. Yan, X., Su, X., World Scientific: Linear Regression Analysis [Electronic Resource]: Theory and Computing (2009)

    Google Scholar 

  10. Gergonne, J.D.: The application of the method of least squares to the interpolation of sequences. Historia Mathematica 1(4), 439–447 (1974)

    Article  MathSciNet  Google Scholar 

  11. Stigler, S.M.: Gergonne’s 1815 paper on the design and analysis of polynomial regression experiments. Historia Mathematica 1(4), 431–439 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brown, R.G.: Exponential Smoothing for Predicting Demand, p. 15. Arthur D. Little Inc., Cambridge (1956)

    Google Scholar 

  13. Brown, R.G.: Smoothing, forecasting and prediction of discrete time series. J. R. Stat. Soc. 127(2) (1964)

    Google Scholar 

  14. Mills, T.C.: Time Series Techniques for Economists. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  15. Jenkins, G.M.: Autoregressive-Integrated Moving Average (ARIMA) Models. Encyclopedia of Statistical Sciences. Wiley, New York (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, D., Man, Y., Ren, L. (2018). A Composite Anomaly Detection Method for Identifying Network Element Hitches. In: Zu, Q., Hu, B. (eds) Human Centered Computing. HCC 2017. Lecture Notes in Computer Science(), vol 10745. Springer, Cham. https://doi.org/10.1007/978-3-319-74521-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74521-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74520-6

  • Online ISBN: 978-3-319-74521-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics