Abstract
In the big data era, privacy preserving is a vital security challenge for data mining. Common object of privacy preserving is personal privacy, which should be kept unrevealed while data mining on group information. However, for a few sensitive groups, such as suffering from some particular disease, engaging in some special occupation or having some peculiar hobby, even if every personal data is processed for privacy preserving, group specificity can be still exposed. Therefore, we propose the concept and method of anti-data mining on group privacy information. By adding, swapping data according to our rules, the minable characteristic and group specificity of original data is destroyed and eliminated to prevent group privacy from data mining.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brown, B., Chui, M., Manyika, J.: Are you ready for the era of “big data”? http://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/are-you-ready-for-the-era-of-big-data
Meng, X., Ci, X.: Big data management: concepts, techniques and challenges. J. Comput. Res. Dev. 50(1), 146–169 (2013)
Mauro, A.D., Greco, M., Grimaldi, M.: A formal definition of big data based on its essential features. Libr. Rev. 65(3), 122–135 (2016)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2006)
Zetlin, M.: The Latest Privacy Invasion: Retailer Tracking (2012)
Agrawal, R., Srikant, R.: Privacy preserving data mining. In: Proceedings of SIGMOD 2000, New York, pp. 439–450. ACM (2000)
Lindell, P.: Privacy preserving data mining. J. Cryptol. 15(3), 177–206 (2002)
Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data mining. In: PODS, pp. 211–222 (2004)
Vaidya, J., Clifton, C.: Privacy-preserving data mining: why, how, and when. IEEE Secur. Priv. Mag. 2(6), 19–27 (2004)
Zhang, N.: Privacy-preserving data mining. Texas A&M University, pp. 439–450 (2006)
Vaidya, J., Zhu, Y.M., Clifton, C.W.: Privacy Preserving Data Mining. Advances in Information Security. Springer, New York (2005)
Lindell, P.: Privacy Preserving Data Mining. Springer, New York (2006)
Saranya, K., Premalatha, K., Rajasekar, S.S.: A survey on privacy preserving data mining. In: International Conference on Electronics and Communication Systems, pp. 1740–1744. IEEE (2015)
Aggarwal, C.C., Yu, P.S.: A general survey of privacy-preserving data mining models and algorithms. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining. ADBS, vol. 34, pp. 11–52. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-70992-5_2
Matwin, S.: Privacy-preserving data mining techniques: survey and challenges. In: Custers, B., Calders, T., Schermer, B., Zarsky, T. (eds.) Discrimination and Privacy in the Information Society. SAPERE, vol. 3, pp. 209–221. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30487-3_11
Xu, L., Jiang, C., Wang, J., et al.: Information security in big data: privacy and data mining. Access IEEE 2, 1149–1176 (2014)
Verykios, V.S., Bertino, E., Fovino, I.N., et al.: State-of-the-art in privacy preserving data mining. ACM Sigmod Rec. 33(1), 50–57 (2004)
Li, F., Ma, J., Li, J.H.: Distributed anonymous data perturbation method for privacy-preserving data mining. J. Zhejiang Univ. Sci. A 10(7), 952–963 (2009)
Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. IEEE Trans. Knowl. Data Eng. 16(9), 1026–1037 (2004)
Inan, A., Sayg, Y., Savas, E., et al.: Privacy preserving clustering on horizontally partitioned data. Data Knowl. Eng. 63(3), 646–666 (2007)
Ouda, M.A., Salem, S.A., Ali, I.A., et al.: Privacy-preserving data mining (PPDM) method for horizontally partitioned data. Int. J. Comput. Sci. 9(5) (2012)
Dwork, C., Nissim, K.: Privacy-preserving datamining on vertically partitioned databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_32
Muthulakshmi, N.V., Sandhya Rani, K.: Privacy preserving association rule mining in vertically partitioned databases. Int. J. Comput. Appl. 39(13), 29–35 (2012)
Malik, M.B., Ghazi, M.A., Ali, R.: Privacy preserving data mining techniques: current scenario and future prospects. In: Third International Conference on Computer and Communication Technology, pp. 26–32. IEEE Computer Society (2012)
Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE Trans. Knowl. Data Eng. 18(1), 92–106 (2006)
Kargupta, H., Datta, S., Wang, Q., et al.: On the privacy preserving properties of random data perturbation techniques. In: IEEE International Conference on Data Mining, p. 99. IEEE Computer Society (2003)
Sugumar, R., Jayakumar, C., Rengarajan, A.: An efficient blocking algorithm for privacy preserving data mining. J. Comput. (2011)
Fienberg, S.E., McIntyre, J.: Data swapping: variations on a theme by Dalenius and Reiss. In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004. LNCS, vol. 3050, pp. 14–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25955-8_2
Li, G., Wang, Y.: Privacy-preserving data mining based on sample selection and singular value decomposition. In: International Conference on Internet Computing & Information Services, pp. 298–301. IEEE (2011)
Fang, W.W., Yang, B.R., Yang, J., et al.: Decision-tree model research based on privacy-preserving. Pattern Recogn. Artif. Intell. 23(6), 776–780 (2010)
Oliveira, S.R.M., Zaïane, O.R., Saygin, Y.: Secure association rule sharing. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 74–85. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_10
Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: International Conference on Very Large Data Bases, pp. 487–499. Morgan Kaufmann Publishers Inc. (2000)
Kumar, P., Varma, K.I., Sureka, A.: Fuzzy based clustering algorithm for privacy preserving data mining. Int. J. Bus. Inf. Syst. 7(1), 27–40 (2011)
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991). https://doi.org/10.1007/978-94-011-3534-4
Iqbal, K., Asghar, S., Fong, S.: A PPDM model using Bayesian Network for hiding sensitive XML Association Rules. In: IEEE International Conference on Digital Information Management, ICDIM 2011, Melbourne, Australia, September, pp. 30–35. DBLP (2011)
Ferguson, D., Likhachev, M., Stentz, A.: A guide to heuristic-based path planning. Comput. Knowl. Technol. (2005)
Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. ACM Sigkdd Explor. Newsl. 4(2), 12–19 (2002)
Agrawal, R., Srikant, R.: Privacy-Preserving Data Mining. Foundations and Advances in Data Mining, pp. 36–54. Springer, Berlin Heidelberg (2005)
http://news.china.com/domestic/945/20160718/23079010.html. [DB/OL]
Fang, B., Jia, Y., Aiping, L.I., et al.: Privacy preservation in big data: a survey. Big Data Res. (2016)
Brugger, S.T., Kelley, M., Sumikawa, K., et al.: Defining privacy for data mining. In: National Science Foundation Workshop on Next Generation Data Mining, pp. 126–133 (2002)
Chen, T.S., Chen, J., Kao, Y.H., et al.: A novel anti-data mining technique based on hierarchical anti-clustering (HAC). In: Eighth International Conference on Intelligent Systems Design and Applications, pp. 426–430. IEEE Computer Society (2008)
Chen, T.S., Chen, J., Kao, Y.H.: A novel hybrid protection technique of privacy-preserving data mining and anti-data mining. Inf. Technol. J. 9(3), 500–505 (2010)
Berkhin, P.: A survey of clustering data mining techniques. Grouping Multidimension. Data 43(1), 25–71 (2006)
Acknowledgement
The project was supported by the National Natural Science Foundation of China under Grant 61502440 and the Open Research Project of The Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant KLIGIP1610.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Yang, F., Tian, T., Yao, H., Zhao, X., Zheng, T., Ning, M. (2018). Anti-data Mining on Group Privacy Information. In: Zu, Q., Hu, B. (eds) Human Centered Computing. HCC 2017. Lecture Notes in Computer Science(), vol 10745. Springer, Cham. https://doi.org/10.1007/978-3-319-74521-3_51
Download citation
DOI: https://doi.org/10.1007/978-3-319-74521-3_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-74520-6
Online ISBN: 978-3-319-74521-3
eBook Packages: Computer ScienceComputer Science (R0)