Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Anti-data Mining on Group Privacy Information

  • Conference paper
  • First Online:
Human Centered Computing (HCC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10745))

Included in the following conference series:

Abstract

In the big data era, privacy preserving is a vital security challenge for data mining. Common object of privacy preserving is personal privacy, which should be kept unrevealed while data mining on group information. However, for a few sensitive groups, such as suffering from some particular disease, engaging in some special occupation or having some peculiar hobby, even if every personal data is processed for privacy preserving, group specificity can be still exposed. Therefore, we propose the concept and method of anti-data mining on group privacy information. By adding, swapping data according to our rules, the minable characteristic and group specificity of original data is destroyed and eliminated to prevent group privacy from data mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, B., Chui, M., Manyika, J.: Are you ready for the era of “big data”? http://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/are-you-ready-for-the-era-of-big-data

  2. https://en.wikipedia.org/wiki/Big_data

  3. Meng, X., Ci, X.: Big data management: concepts, techniques and challenges. J. Comput. Res. Dev. 50(1), 146–169 (2013)

    Google Scholar 

  4. Mauro, A.D., Greco, M., Grimaldi, M.: A formal definition of big data based on its essential features. Libr. Rev. 65(3), 122–135 (2016)

    Article  Google Scholar 

  5. Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann Publishers, San Francisco (2006)

    MATH  Google Scholar 

  6. Zetlin, M.: The Latest Privacy Invasion: Retailer Tracking (2012)

    Google Scholar 

  7. Agrawal, R., Srikant, R.: Privacy preserving data mining. In: Proceedings of SIGMOD 2000, New York, pp. 439–450. ACM (2000)

    Google Scholar 

  8. Lindell, P.: Privacy preserving data mining. J. Cryptol. 15(3), 177–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evfimievski, A., Gehrke, J., Srikant, R.: Limiting privacy breaches in privacy preserving data mining. In: PODS, pp. 211–222 (2004)

    Google Scholar 

  10. Vaidya, J., Clifton, C.: Privacy-preserving data mining: why, how, and when. IEEE Secur. Priv. Mag. 2(6), 19–27 (2004)

    Article  Google Scholar 

  11. Zhang, N.: Privacy-preserving data mining. Texas A&M University, pp. 439–450 (2006)

    Google Scholar 

  12. Vaidya, J., Zhu, Y.M., Clifton, C.W.: Privacy Preserving Data Mining. Advances in Information Security. Springer, New York (2005)

    MATH  Google Scholar 

  13. Lindell, P.: Privacy Preserving Data Mining. Springer, New York (2006)

    MATH  Google Scholar 

  14. Saranya, K., Premalatha, K., Rajasekar, S.S.: A survey on privacy preserving data mining. In: International Conference on Electronics and Communication Systems, pp. 1740–1744. IEEE (2015)

    Google Scholar 

  15. Aggarwal, C.C., Yu, P.S.: A general survey of privacy-preserving data mining models and algorithms. In: Aggarwal, C.C., Yu, P.S. (eds.) Privacy-Preserving Data Mining. ADBS, vol. 34, pp. 11–52. Springer, Boston (2008). https://doi.org/10.1007/978-0-387-70992-5_2

    Chapter  Google Scholar 

  16. Matwin, S.: Privacy-preserving data mining techniques: survey and challenges. In: Custers, B., Calders, T., Schermer, B., Zarsky, T. (eds.) Discrimination and Privacy in the Information Society. SAPERE, vol. 3, pp. 209–221. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-30487-3_11

    Chapter  Google Scholar 

  17. Xu, L., Jiang, C., Wang, J., et al.: Information security in big data: privacy and data mining. Access IEEE 2, 1149–1176 (2014)

    Article  Google Scholar 

  18. Verykios, V.S., Bertino, E., Fovino, I.N., et al.: State-of-the-art in privacy preserving data mining. ACM Sigmod Rec. 33(1), 50–57 (2004)

    Article  Google Scholar 

  19. Li, F., Ma, J., Li, J.H.: Distributed anonymous data perturbation method for privacy-preserving data mining. J. Zhejiang Univ. Sci. A 10(7), 952–963 (2009)

    Article  MATH  Google Scholar 

  20. Kantarcioglu, M., Clifton, C.: Privacy-preserving distributed mining of association rules on horizontally partitioned data. IEEE Trans. Knowl. Data Eng. 16(9), 1026–1037 (2004)

    Article  Google Scholar 

  21. Inan, A., Sayg, Y., Savas, E., et al.: Privacy preserving clustering on horizontally partitioned data. Data Knowl. Eng. 63(3), 646–666 (2007)

    Article  Google Scholar 

  22. Ouda, M.A., Salem, S.A., Ali, I.A., et al.: Privacy-preserving data mining (PPDM) method for horizontally partitioned data. Int. J. Comput. Sci. 9(5) (2012)

    Google Scholar 

  23. Dwork, C., Nissim, K.: Privacy-preserving datamining on vertically partitioned databases. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 528–544. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8_32

    Chapter  Google Scholar 

  24. Muthulakshmi, N.V., Sandhya Rani, K.: Privacy preserving association rule mining in vertically partitioned databases. Int. J. Comput. Appl. 39(13), 29–35 (2012)

    Google Scholar 

  25. Malik, M.B., Ghazi, M.A., Ali, R.: Privacy preserving data mining techniques: current scenario and future prospects. In: Third International Conference on Computer and Communication Technology, pp. 26–32. IEEE Computer Society (2012)

    Google Scholar 

  26. Liu, K., Kargupta, H., Ryan, J.: Random projection-based multiplicative data perturbation for privacy preserving distributed data mining. IEEE Trans. Knowl. Data Eng. 18(1), 92–106 (2006)

    Article  Google Scholar 

  27. Kargupta, H., Datta, S., Wang, Q., et al.: On the privacy preserving properties of random data perturbation techniques. In: IEEE International Conference on Data Mining, p. 99. IEEE Computer Society (2003)

    Google Scholar 

  28. Sugumar, R., Jayakumar, C., Rengarajan, A.: An efficient blocking algorithm for privacy preserving data mining. J. Comput. (2011)

    Google Scholar 

  29. Fienberg, S.E., McIntyre, J.: Data swapping: variations on a theme by Dalenius and Reiss. In: Domingo-Ferrer, J., Torra, V. (eds.) PSD 2004. LNCS, vol. 3050, pp. 14–29. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25955-8_2

    Chapter  Google Scholar 

  30. Li, G., Wang, Y.: Privacy-preserving data mining based on sample selection and singular value decomposition. In: International Conference on Internet Computing & Information Services, pp. 298–301. IEEE (2011)

    Google Scholar 

  31. Fang, W.W., Yang, B.R., Yang, J., et al.: Decision-tree model research based on privacy-preserving. Pattern Recogn. Artif. Intell. 23(6), 776–780 (2010)

    Google Scholar 

  32. Oliveira, S.R.M., Zaïane, O.R., Saygin, Y.: Secure association rule sharing. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 74–85. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_10

    Chapter  Google Scholar 

  33. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: International Conference on Very Large Data Bases, pp. 487–499. Morgan Kaufmann Publishers Inc. (2000)

    Google Scholar 

  34. Kumar, P., Varma, K.I., Sureka, A.: Fuzzy based clustering algorithm for privacy preserving data mining. Int. J. Bus. Inf. Syst. 7(1), 27–40 (2011)

    Google Scholar 

  35. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991). https://doi.org/10.1007/978-94-011-3534-4

    Book  MATH  Google Scholar 

  36. Iqbal, K., Asghar, S., Fong, S.: A PPDM model using Bayesian Network for hiding sensitive XML Association Rules. In: IEEE International Conference on Digital Information Management, ICDIM 2011, Melbourne, Australia, September, pp. 30–35. DBLP (2011)

    Google Scholar 

  37. Ferguson, D., Likhachev, M., Stentz, A.: A guide to heuristic-based path planning. Comput. Knowl. Technol. (2005)

    Google Scholar 

  38. Pinkas, B.: Cryptographic techniques for privacy-preserving data mining. ACM Sigkdd Explor. Newsl. 4(2), 12–19 (2002)

    Article  MathSciNet  Google Scholar 

  39. Agrawal, R., Srikant, R.: Privacy-Preserving Data Mining. Foundations and Advances in Data Mining, pp. 36–54. Springer, Berlin Heidelberg (2005)

    Google Scholar 

  40. http://news.china.com/domestic/945/20160718/23079010.html. [DB/OL]

  41. Fang, B., Jia, Y., Aiping, L.I., et al.: Privacy preservation in big data: a survey. Big Data Res. (2016)

    Google Scholar 

  42. Brugger, S.T., Kelley, M., Sumikawa, K., et al.: Defining privacy for data mining. In: National Science Foundation Workshop on Next Generation Data Mining, pp. 126–133 (2002)

    Google Scholar 

  43. Chen, T.S., Chen, J., Kao, Y.H., et al.: A novel anti-data mining technique based on hierarchical anti-clustering (HAC). In: Eighth International Conference on Intelligent Systems Design and Applications, pp. 426–430. IEEE Computer Society (2008)

    Google Scholar 

  44. Chen, T.S., Chen, J., Kao, Y.H.: A novel hybrid protection technique of privacy-preserving data mining and anti-data mining. Inf. Technol. J. 9(3), 500–505 (2010)

    Article  Google Scholar 

  45. Berkhin, P.: A survey of clustering data mining techniques. Grouping Multidimension. Data 43(1), 25–71 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The project was supported by the National Natural Science Foundation of China under Grant 61502440 and the Open Research Project of The Hubei Key Laboratory of Intelligent Geo-Information Processing under Grant KLIGIP1610.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuyu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, F., Tian, T., Yao, H., Zhao, X., Zheng, T., Ning, M. (2018). Anti-data Mining on Group Privacy Information. In: Zu, Q., Hu, B. (eds) Human Centered Computing. HCC 2017. Lecture Notes in Computer Science(), vol 10745. Springer, Cham. https://doi.org/10.1007/978-3-319-74521-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74521-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74520-6

  • Online ISBN: 978-3-319-74521-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics