Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Novel Trace Clustering Technique Based on Constrained Trace Alignment

  • Conference paper
  • First Online:
Human Centered Computing (HCC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10745))

Included in the following conference series:

Abstract

Whenever traditional process discovery techniques are confronted with complex and flexible environments, equipping all the traces with just one single model might lead to a spaghetti-like process description. Trace clustering which splits the logs into clusters and applies discovery algorithm per cluster has affirmed to be a versatile solution for that. Nevertheless, most trace clustering techniques are not precise enough due to the indiscriminate treatment on the activities captured in traces. As a result, the impacts of some important activities are reduced and some typical information may be distorted or even lost during comparison. In this paper, we propose a novel trace clustering technique that based on constrained traces alignment and then adapt two appropriate clustering strategies into process mining perspective. And experiments on real-life event logs show that our technique has compelling outperformance in terms of process models complexity and comprehensibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.processmining.org.

  2. 2.

    http://www.win.tue.nl/bpi/doku.php?id=2012:challenge.

References

  1. Aalst, W.V.D.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  2. Bose, R.P.J.C., van der Aalst, W.M.P.:: Context aware trace clustering: towards improving process mining results. In: SIAM International Conference on Data Mining, pp. 401–412 (2009)

    Google Scholar 

  3. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved patterns: towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12186-9_16

    Chapter  Google Scholar 

  4. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace alignment in process mining: opportunities for process diagnostics. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 227–242. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15618-2_17

    Chapter  Google Scholar 

  5. de Medeiros, A.K.A., Guzzo, A., Greco, G., van der Aalst, W.M.P., Weijters, A.J.M.M., van Dongen, B.F., Saccà, D.: Process mining based on clustering: a quest for precision. In: ter Hofstede, A., Benatallah, B., Paik, H.-Y. (eds.) BPM 2007. LNCS, vol. 4928, pp. 17–29. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78238-4_4

    Chapter  Google Scholar 

  6. Ferreira, D.R.: Applied sequence clustering techniques for process mining. In: Handbook of Research on Business Process Modeling, pp. 492–513 (2009)

    Google Scholar 

  7. García BañUelos, L., Dumas, M., La Rosa, M., De Weerdt, J., Ekanayake, C.C.: Controlled automated discovery of collections of business process models. Inf. Syst. 46, 85–101 (2014)

    Article  Google Scholar 

  8. Greco, G., Guzzo, A., Pontieri, L., Sacca, D.: Discovering expressive process models by clustering log traces. IEEE Trans. Knowl. Data Eng. 18, 1010–1027 (2006)

    Article  Google Scholar 

  9. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplification based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_24

    Chapter  Google Scholar 

  10. Hastie, T., Friedman, J., Tibshirani, R.: The Elements of Statistical Learning, vol. 167. Springer, New York (2009). https://doi.org/10.1007/978-0-387-21606-5

    Book  MATH  Google Scholar 

  11. von Luxbur, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  12. Reijers, H.A., Mendling, J.: A study into the factors that influence the understandability of business process models. Trans. Sys. Man Cyber. Part A 41, 449–462 (2011)

    Article  Google Scholar 

  13. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process mining. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00328-8_11

    Chapter  Google Scholar 

  14. Tsai, Y.T.: The constrained common subsequence problem. Inf. Process. Lett. 88, 173–176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Weerdt, J.D., Broucke, S.V., Vanthienen, J., Baesens, B.: Active trace clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25, 2708–2720 (2013)

    Article  Google Scholar 

Download references

Acknowledgment

This work is supported in part by the National Natural Science Foundation of China under Grant No. 61672022, Key Disciplines of Computer Science and Technology of Shanghai Polytechnic University under Grant No. XXKZD1604, the Fundamental Research Funds for the Central Universities and Foundation of Graduate Innovation of Shanghai Polytechnic University, and Foundation of Graduate Innovation Center in NUAA under Grant No. kfjj20161601.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, P., Tan, W., Tang, A., Hu, K. (2018). A Novel Trace Clustering Technique Based on Constrained Trace Alignment. In: Zu, Q., Hu, B. (eds) Human Centered Computing. HCC 2017. Lecture Notes in Computer Science(), vol 10745. Springer, Cham. https://doi.org/10.1007/978-3-319-74521-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74521-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74520-6

  • Online ISBN: 978-3-319-74521-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics